
WPI CS 525 / DS 595 - ST: Multi-Agent Decision Making Fall 2025

Lecture 3c: Policy Optimization

Qi Zhang

Last Updated: October 2025

1 The Policy Optimization Objective

Value-based methods such as Q-learning maintain (only) value estimates as the RL agent’s internal

state and extract policies to finally recommend from those value estimates. As the ultimate goal

of RL is to find value-maximizing policies, in this note we consider a more direct approach, policy

optimization, that, as its name suggests, directly maintains and optimizes a policy from experiences.

Formally, consider discounted-reward MDP M = (S,A, P,R, γ, d0) where d0 ∈ ∆(S) is the initial

state distribution, and let (in-episode) timesteps be 0-based indexed as h = 0, 1, . . . and rh :=

R(sh, ah) be the reward at timestep h. For policy π : S → ∆(A), its performance is quantified as

J(π), the expected discounted cumulative reward starting from an initial state s0 ∼ d0 and follow

policy π:

J(π) := E

[∞∑
h=0

γhrh

∣∣∣ s0 ∼ d0, ah ∼ π(sh), sh+1 ∼ P (sh, ah)

]
= Es0∼d0

[
Vπ(s0)

]
.

The policy optimization problem is therefore maxπ∈Π J(π), where Π is a class of policies being

searched over. Policy optimization can be performed in the planning setting (i.e., MDP M is

fully known) or in the RL setting where the agent interacts with the MDP without requiring prior

knowledge of (P,R).

2 Policy Gradient Methods: An Introduction

For the rest of this note, we focus on the case where the policy class is parameterized as Π = {πθ :
θ ∈ Θ}, where parameter space Θ ⊆ Rn is a set of continuous real vectors. Therefore, identifying

a good policy in πθ ∈ Π is equivalent to identifying a good parameter θ. We assume that πθ(a|s)
is differentiable with respect to θ for all (s, a) ∈ S ×A and let ∇θπθ(a|s) denote the derivative.

A good example to keep in mind is the neural policy where a neural network is parameterized by θ,

takes as input state s, and outputs πθ(a|s) for all a ∈ A, and therefore the differentiation of πθ(a|s)
can be achieved efficiently by backpropagation.

To search over such Π, we here consider gradient ascent methods that update parameter θ iter-

atively. For simplicity, we consider the unconstrained case where θ always remains in the valid

set Θ after the update (e.g., Θ = Rn). For example, the standard gradient ascent update is

θ ← θ + α∇θJ(πθ) where scalar α > 0 determines the size of the update in the direction of the

policy gradient:

∇θJ(πθ) =
[
∂J(πθ)
∂θ1

, . . . , ∂J(πθ)
∂θn

]
∈ Rn, where ∂J(πθ)

∂θi
= lim

∆θi→0

J(πθ+∆θi)− J(πθ)

∆θi
. (1)

In principle, ∇θJ(πθ) can be numerically evaluated as in (1) by evaluating the policies before

and after the n small perturbations (), but it is impractical when n is large. It turns out policy

gradient ∇θJ(πθ) can be expressed in closed-form and there are even more than one such closed-

form expression.

1

WPI CS 525 / DS 595 - ST: Multi-Agent Decision Making Fall 2025

2.1 REINFORCE

We begin with the simplest policy gradient form called REINFORCE, which applies to the case

where any episode always terminates after a finite number of H transitions. We denote the trajec-

tory of an episode and its cumulative discounted reward as

τ = (s0, a0, r0, . . . , sH−1, aH−1, rH−1, sH), R(τ) =
∑H−1

h=0 γhrh.

The probability of obtaining a particular trajectory τ when following policy π is

P π(τ) = d0(s0)π(a0|s0)P (s1 | s0, a0) · · ·π(aH−1|sH−1)P (sH | sH−1, aH−1)

For notation conciseness, we will drop the subscript θ in ∇θ and πθ. The policy gradient can then

be computed as

∇J(π) = ∇Eτ∼π [R(τ)]

= ∇

(∑
τ

R(τ)P π(τ)

)
=
∑
τ

R(τ)∇P π(τ)

=
∑
τ

R(τ)P π(τ)∇ logP π(τ) (Homework 3’s 2a)

=
∑
τ

R(τ)P π(τ)∇ log
(
d0(s0)π(a0|s0)P (s1 | s0, a0) · · ·π(aH−1|sH−1)

)
=
∑
τ

R(τ)P π(τ)∇
(
log d0(s0) +

∑H−1
h=0 log π(ah|sh) +

∑H−1
h=0 logP (sh+1 | sh, ah)

)
=
∑
τ

R(τ)P π(τ)∇
(∑H−1

h=0 log π(ah|sh)
)

(Homework 3’s 2b) (2)

= Eτ∼π

[
R(τ)

∑H−1
h=0 ∇ log π(ah|sh)︸ ︷︷ ︸

ĝ REINFORCE-1(τ)

]
. (3)

We now discuss how to utilize the derivations above:

• In the planning setting where MDP M is fully known, we can compute P π(τ) for any trajec-

tory τ . Therefore, we can enumerate all possible trajectories to compute ∇J(π) exactly via

(2).

• In the RL setting, (P,R) is unknown and therefore we cannot compute P π(τ) or (2). Instead,

the estimator ĝ REINFORCE-1(τ) as defined in (3) is an unbiased estimator of ∇J(π) and we

can update the parameter in a stochastic gradient ascent fashion, e.g. θ ← θ + αĝ(τ), with

trajectory τ sampled from current policy π = πθ. The resulting RL algorithm, REINFORCE,

is outlined in Algorithm 1.

2.2 The action-value expression

Although the gradient estimator of (3) is unbiased, it is often of high variance, which will then hurt

the performance of the stochastic gradient ascent. We next derive alternative policy gradient esti-

mators that usually are of lower variances. A thorough discussion of variance reduction techniques

for policy gradient is beyond the scope of this note.

2

WPI CS 525 / DS 595 - ST: Multi-Agent Decision Making Fall 2025

Algorithm 1 REINFORCE

1: learner initializes parameter θ for policy πθ;

2: repeat over episodes:

3: learner finishes current episode τ by following πθ until termination;

4: learner updates parameter θ with REINFORCE estimator ĝ(τ) (cf. (3) (6));

5: until some stopping criterion is met

6: learner outputs policy π̂ = πθ or π̂(s) = argmaxa∈A πθ(a|s);

One reason that estimator (3) is of high variance is due to the episodic reward R(τ): its summation

of rewards over many steps is usually of high variance. This issue can be alleviated by turning to

an alternative expression of policy gradient that essentially replace the episodic reward with the

action-values:

∇J(π) = E(s,a)∼dπ [∇ log π(a|s) ·Qπ(s, a)] (4)

Here, dπ is the (unnormalized) state-action occupancy measure that accumulates the discounted

expectation of visitation of state-action pairs over time:

dπ(s, a) :=
∞∑
h=0

γtdπh(s, a) with dπh(s, a) := Pr(sh = s, ah = a | s0 ∼ d0, π).

Here, dπ(s, a) is not a probability measure (i.e.,
∑

(s,a) d
π(s, a) ̸= 1), but we still interpret the

expectation as E(s,a)∼dπ [·] =
∑

s,a d
π(s, a)(·).

Again, in the planning setting, dπ and Qπ can be exactly computed, and therefore policy gradient

∇J(π) can be exactly computed via (4). To see how (4) yields a gradient estimator for the RL

setting, note the following fact: for any function f(s, a) on state-action pairs,

E(s,a)∼dπ [f(s, a)] = Eτ∼π

[∞∑
h=0

γhf(sh, ah)

]
. (5)

We omit a proof of (5), but it is fairly intuitive: dπ accumulates discounted visitation of state-action

pair (s, a) by following π, so it is equivalent to using π to sample trajectories and averaging over

timesteps. From this, we can obtain another policy gradient estimator:

∇J(π) = E(s,a)∼dπ [∇ log π(a|s) ·Qπ(s, a)]

= Eτ∼π

[∑H
h=0 γ

h∇ log π(ah|sh) ·Qπ(sh, ah)
]

(τ terminates after H transitions)

= Eτ∼π

[∑H
h=0 γ

h∇ log π(ah|sh) ·
∑H

h′=h γ
h′−hrh′︸ ︷︷ ︸

ĝREINFORCE-2(τ)

]
(6)

Roughly speaking, the last equality above is due to Eτ∼π[Q
π(sh, ah)] = Eτ∼π[

∑H
h′=h γ

h′−hrh′], and

a more rigorous argument can be made via law of total expectation (conditioned on particular

realizations of (sh, ah)). The resulting estimator ĝREINFORCE-2(τ) in (6) can then be used as the

gradient estimator in Algorithm 1.

3

WPI CS 525 / DS 595 - ST: Multi-Agent Decision Making Fall 2025

3 Policy Optimization in a Trust Region, Proximal Policy Optimization

All methods in Section 2, often referred to as vanilla policy gradient methods, adopt the standard

gradient ascent approach that updates the parameter with a single step aligned with the policy

gradient, with different methods varying in how the gradient estimation is performed. In this

section, we introduce another family of methods, trust region policy optimization methods, that

update the current policy parameter with multiple gradient steps. We will describe in detail one

such method, Proximal Policy Optimization (PPO), which is easy to implement and are in many

cases more efficient and stable than vanilla policy gradient methods.

3.1 Policy optimization in a trust region.

The key idea behind the trust region methods is to form a surrogate objective that well approximates

the true objective to J(πθ) within a local region, i.e., trust region, where the deviation from πθ
is sufficiently small. The technical tool to form such a surrogate objective is the Performance

Difference Lemma that quantifies the difference in the values of two policies:

Lemma 1 (Performance Difference Lemma). For any two policies π, π′,

J(π′)− J(π) = E(s,a)∼dπ′ [Aπ(s, a)]

where Aπ(s, a) := Qπ(s, a)− V π(s) is called the advantage of policy π.

To use Lemma 1 to optimize J(πθ), consider setting π = πθold and π′ = πθ, where θold is the

parameter of the current policy from which we have sampled trajectories (τ ∼ πθold) and θ is the

candidate policy parameter we are optimizing over. We proceed as

J(πθ)− J(πθold) = E(s,a)∼dπθ [A
πθold (s, a)]

= Es∼dπθ , a∼πθ(s) [A
πθold (s, a)] (dπθ is abused as the marginal state distribution)

= Es∼dπθ , a∼πθold
(s)

[
πθ(a|s)
πθold(a|s)

Aπθold (s, a)

]
(Homework 3’s 2c)

≈ Es∼d
πθold , a∼πθold

(s)

[
πθ(a|s)
πθold(a|s)

Aπθold (s, a)

]
= E(s,a)∼d

πθold

[
πθ(a|s)
πθold(a|s)

Aπθold (s, a)

]
=: L(θ)

The above derivation is useful because:

• Since πθold is fixed, maxθ J(θ) is equivalent to maxθ(J(πθ) − J(πθold)), i.e., maximizing the

improvement of πθ over πθold , which is exactly what is being quantified.

• According to the first equality, the exact improvement can be estimated by trajectories sam-

pled from πθ (i.e., Edπθ) but we only have trajectories from πθold . To solve this issue, the

derivation replaces dπθ with dπθold , using the importance sampling trick (the third equal-

ity) and also paying the approximation error (≈). In the RL setting, we can approximate

E(s,a)∼d
πθold

via trajectories sampled from the policy, τ ∼ πθold , as justified in Equation (5).

These trajectories can also be used to estimate advantages Aπold .

4

WPI CS 525 / DS 595 - ST: Multi-Agent Decision Making Fall 2025

• The approximation, L(θ), is the surrogate objective we will be optimizing, which is a good

approximation when πθ is not too different from πθold (so dπθ is not too different from dπθold):

max
θ

L(θ) subject to: πθ is not too different from πθold (7)

• We can perform a full-scale optimization of (7), e.g., via multiple gradient ascent steps. After

the optimization, we will set θold to the solution and iteratively proceed to the next round.

3.2 PPO

PPO is an easy-to-implement method for the optimization problem of (7). Instead of a hard-coded

trust region constraint, PPO performs the unconstrained optimization of a clipped version of L(θ):

letting rθ(a|s) := πθ(a|s)
πθold

(a|s)

max
θ

E(s,a)∼d
πθold

[
min

{
rθ(a|s)Aπθold (s, a)︸ ︷︷ ︸

same as in L(θ)

, clip1+ϵ
1−ϵ

(
rθ(a|s)

)
Aπθold (s, a)︸ ︷︷ ︸

same, but with rθ clipped

}]
.

The clipping implicitly discourages changing πθ too much from πθold . Figure 1 illustrates what

would happen respectively for advantage being positive vs negative and the policy ratio being

clipped vs not clipped.

Figure 1: Plot showing one term for a certain (s, a)-pair of the PPO objective as a function of the

policy ratio rθ(a|s). Credit to this post.

Implementation details. We provide a pseudocode of PPO in Algorithm 2, which should be

useful for you to implement it in hw3.ipynb. The PPO version you will implement in hw3.ipynb is

significantly simplified from a standard version, particularly on 1) how the policy is parameterized

and how 2) the advantages are estimated (line 5). We recommend a standard PPO implementation

(like this one) for regular use cases.

5

https://stackoverflow.com/questions/46422845/what-is-the-way-to-understand-proximal-policy-optimization-algorithm-in-rl
https://github.com/vwxyzjn/cleanrl

WPI CS 525 / DS 595 - ST: Multi-Agent Decision Making Fall 2025

Algorithm 2 Proximal Policy Optimization (PPO) with clipped objective

1: learner initializes parameter θ for policy πθ;

2: θold ← θ;

3: repeat

4: Follow πθold to collect and store multiple transitions {(st, at, rt, st+1)};
5: Estimates advantages Ât ≈ Aπθold (st, at); ▷ Can involve training and using a critic

6: Optimize θ to maximize

Et

[
min

{
rt(θ)Ât, clip1+ϵ

1−ϵ

(
rt(θ)

)
Ât

}]
where rt(θ) :=

πθ(at|st)
πθold

(at|st) and Et denotes sampling from the stored transitions;

7: Update parameter θold ← θ;

8: until some stopping criterion is met

9: learner outputs policy π̂ = πθ or π̂(s) = argmaxa∈A πθ(a|s) with θ = θold;

6

	The Policy Optimization Objective
	Policy Gradient Methods: An Introduction
	REINFORCE
	The action-value expression

	Policy Optimization in a Trust Region, Proximal Policy Optimization
	Policy optimization in a trust region.
	PPO

