WPI CS 525 / DS 595 - ST: Multi-Agent Decision Making Fall 2025

Lecture 3c: Policy Optimization
Qi Zhang
Last Updated: October 2025

1 The Policy Optimization Objective

Value-based methods such as Q-learning maintain (only) value estimates as the RL agent’s internal
state and extract policies to finally recommend from those value estimates. As the ultimate goal
of RL is to find value-maximizing policies, in this note we consider a more direct approach, policy
optimization, that, as its name suggests, directly maintains and optimizes a policy from experiences.

Formally, consider discounted-reward MDP M = (S, A, P, R,~,dp) where dy € A(S) is the initial
state distribution, and let (in-episode) timesteps be 0O-based indexed as h = 0,1,... and rp :=
R(sp,ap) be the reward at timestep h. For policy 7 : & — A(A), its performance is quantified as
J(m), the expected discounted cumulative reward starting from an initial state sg ~ dy and follow
policy 7:

[e.e]

> At ‘ s0 ~ do,an ~ (sp), sp1 ~ Psn,an) | = Esomdy [Va(50)]-
h=0

J(m):=E

The policy optimization problem is therefore max e J(7), where II is a class of policies being
searched over. Policy optimization can be performed in the planning setting (i.e., MDP M is
fully known) or in the RL setting where the agent interacts with the MDP without requiring prior
knowledge of (P, R).

2 Policy Gradient Methods: An Introduction

For the rest of this note, we focus on the case where the policy class is parameterized as IT = {7 :
0 € ©}, where parameter space © C R" is a set of continuous real vectors. Therefore, identifying
a good policy in my € II is equivalent to identifying a good parameter §. We assume that mg(als)
is differentiable with respect to 0 for all (s,a) € S x A and let Vymy(a|s) denote the derivative.

A good example to keep in mind is the neural policy where a neural network is parameterized by 6,
takes as input state s, and outputs mp(a|s) for all a € A, and therefore the differentiation of my(a|s)
can be achieved efficiently by backpropagation.

To search over such II, we here consider gradient ascent methods that update parameter 0 iter-
atively. For simplicity, we consider the unconstrained case where 6 always remains in the valid
set © after the update (e.g., © = R"). For example, the standard gradient ascent update is
0 < 0+ aVyJ(mp) where scalar @ > 0 determines the size of the update in the direction of the
policy gradient:

i e T, . J) J
Vod(mg) = a‘é(al"),..., 8‘6{,(9”0)] € R™, where 6‘{9((9i9) = Alelnio (WHAZ)& (7T9)‘ (1)

In principle, VyJ(mp) can be numerically evaluated as in (1) by evaluating the policies before
and after the n small perturbations (), but it is impractical when n is large. It turns out policy
gradient VyJ(mg) can be expressed in closed-form and there are even more than one such closed-
form expression.

WPI CS 525 / DS 595 - ST: Multi-Agent Decision Making Fall 2025

2.1 REINFORCE

We begin with the simplest policy gradient form called REINFORCE, which applies to the case
where any episode always terminates after a finite number of H transitions. We denote the trajec-
tory of an episode and its cumulative discounted reward as

H—
T =(80,00,70, -, SH-1,am-1,TH-1,50), R(T) =370 v 7.

The probability of obtaining a particular trajectory 7 when following policy w is
PT(7) = do(so)m(aolso)P (s1 | s0,a0) - w(ag—1lsg—1)P (s | sH—1,an-1)

For notation conciseness, we will drop the subscript 6 in Vg and 7. The policy gradient can then
be computed as

VJ(7) = VE oy [R(7)]
=V (Z R(T)P”(r)>
= ZRT(T)VP”(T)
_ ZT:R(T)P”(T)Vlog P™(r) (Homework 3’s 2a)
- ZT:R(T)PW(T)wog (do(SO)w(a0|so)P (1| 50,a0) -+ - Tr(aH_lysH_l))
- S REP (1o dols0) + S115 og m(anlsn) + 4! Tog P (snex | snan))
- Z::R(T)PW(T)V (zhH;Ol logﬂ'(ah|sh)) (Homework 3’s 2b) (2)

= Brr | B(7) AL Viogm(anfsn) |- (3)

g‘ REINFORCE-1 (T)

We now discuss how to utilize the derivations above:

e In the planning setting where MDP M is fully known, we can compute P™(7) for any trajec-
tory 7. Therefore, we can enumerate all possible trajectories to compute V.J(7) exactly via

2).

e In the RL setting, (P, R) is unknown and therefore we cannot compute P™(7) or (2). Instead,
the estimator g REINFORCE-L(7) a5 defined in (3) is an unbiased estimator of V.J(7) and we
can update the parameter in a stochastic gradient ascent fashion, e.g. 6 < 6 + ag(7), with
trajectory T sampled from current policy m = my. The resulting RL algorithm, REINFORCE,

is outlined in Algorithm 1.

2.2 The action-value expression

Although the gradient estimator of (3) is unbiased, it is often of high variance, which will then hurt
the performance of the stochastic gradient ascent. We next derive alternative policy gradient esti-
mators that usually are of lower variances. A thorough discussion of variance reduction techniques
for policy gradient is beyond the scope of this note.

WPI CS 525 / DS 595 - ST: Multi-Agent Decision Making Fall 2025

Algorithm 1 REINFORCE

1: learner initializes parameter 6 for policy mp;

2: repeat over episodes:

3 learner finishes current episode 7 by following 7y until termination;

4: learner updates parameter § with REINFORCE estimator g(7) (cf. (3) (6));
5: until some stopping criterion is met

6: learner outputs policy T = mg or 7(s) = argmax,c 4 mp(a|s);

One reason that estimator (3) is of high variance is due to the episodic reward R(7): its summation
of rewards over many steps is usually of high variance. This issue can be alleviated by turning to
an alternative expression of policy gradient that essentially replace the episodic reward with the
action-values:

VI(7) = E(sa)~ar [V1ogm(als) - Q7 (s, a)] (4)

Here, d™ is the (unnormalized) state-action occupancy measure that accumulates the discounted
expectation of visitation of state-action pairs over time:

oo
d"(s,a) := thd;;(s,a) with df (s,a) := Pr(s;, = s,ap, = a | so ~ do, 7).
h=0
Here, d™(s,a) is not a probability measure (i.e., E(w) d™(s,a) # 1), but we still interpret the
expectation as E gyuar[] = D0, , d(s,0) ().
Again, in the planning setting, d™ and Q™ can be exactly computed, and therefore policy gradient

VJ(7) can be exactly computed via (4). To see how (4) yields a gradient estimator for the RL
setting, note the following fact: for any function f(s,a) on state-action pairs,

]E(s,a)wd” [f(57 a)] =E;r

> A" F(sn, ah)] : (5)
h=0

We omit a proof of (5), but it is fairly intuitive: d™ accumulates discounted visitation of state-action
pair (s,a) by following 7, so it is equivalent to using m to sample trajectories and averaging over
timesteps. From this, we can obtain another policy gradient estimator:

VJ(W) - IE’(s,a)wd’* [v logﬂ(a‘s) ’ Qﬂ(sv CL)]

= E o [Ztho V'V log w(ap|sn) - Q™ (s, ah)} (7 terminates after H transitions)

= Bree [Sho V08 wanlst) - Sl ©

/g\REINFORCE-Q (T)

Roughly speaking, the last equality above is due to E;r[Q™ (s, ap)] = ETNﬂ[Zg:h A =hpy], and
a more rigorous argument can be made via law of total expectation (conditioned on particular
realizations of (s;,ay)). The resulting estimator gREINFORCE-2(7) i (6) can then be used as the

gradient estimator in Algorithm 1.

WPI CS 525 / DS 595 - ST: Multi-Agent Decision Making Fall 2025

3 Policy Optimization in a Trust Region, Proximal Policy Optimization

All methods in Section 2, often referred to as wvanilla policy gradient methods, adopt the standard
gradient ascent approach that updates the parameter with a single step aligned with the policy
gradient, with different methods varying in how the gradient estimation is performed. In this
section, we introduce another family of methods, trust region policy optimization methods, that
update the current policy parameter with multiple gradient steps. We will describe in detail one
such method, Proximal Policy Optimization (PPO), which is easy to implement and are in many
cases more efficient and stable than vanilla policy gradient methods.

3.1 Policy optimization in a trust region.

The key idea behind the trust region methods is to form a surrogate objective that well approximates
the true objective to J(my) within a local region, i.e., trust region, where the deviation from 7y
is sufficiently small. The technical tool to form such a surrogate objective is the Performance
Difference Lemma that quantifies the difference in the values of two policies:

Lemma 1 (Performance Difference Lemma). For any two policies 7,7,
J(x') = J(w) = B, py o [A7(s,a)]

where A™(s,a) == Q" (s,a) — V™(s) is called the advantage of policy .

To use Lemma 1 to optimize J(my), consider setting m = my . and ' = my, where 6,4 is the

old
parameter of the current policy from which we have sampled trajectories (7 ~ my,_,) and 6§ is the

candidate policy parameter we are optimizing over. We proceed as

J(mg) — J(m9,14) = E(s,a)~are [A™%1a (s, a)]

= Eoudmo, army(s) [A™%1(s,a)] (d™ is abused as the marginal state distribution)

mo(als)
= Bsndmo, anmg,, () |:7T001d(a‘3)A7r001d (s, a)} (Homework 3’s 2c)

MAWOM (s, a)}

sd"fo1d anmgq (6) |:7T901d (als)

Q

E

mo(als)
=]E e 714”00 = L 9
(s,a)~d" fold |:7T901d (CL|8) 1d (Sa CL):| ()

The above derivation is useful because:

e Since my,, is fixed, maxy J(#) is equivalent to maxy(J(mp) — J(mg,,)), i.e., maximizing the
improvement of my over my,_,,, which is exactly what is being quantified.

e According to the first equality, the exact improvement can be estimated by trajectories sam-
pled from 7y (i.e., Eqm) but we only have trajectories from 7y ,. To solve this issue, the
derivation replaces d™ with d™%d, using the importance sampling trick (the third equal-
ity) and also paying the approximation error (=). In the RL setting, we can approximate
E(S’G)N J"0oq Via trajectories sampled from the policy, T ~ 7y, as justified in Equation (5).
These trajectories can also be used to estimate advantages A",

WPI CS 525 / DS 595 - ST: Multi-Agent Decision Making Fall 2025

e The approximation, L(6), is the surrogate objective we will be optimizing, which is a good
approximation when 7y is not too different from my_, (so d™ is not too different from d™a):

max L(#) subject to: mg is not too different from g, (7)

e We can perform a full-scale optimization of (7), e.g., via multiple gradient ascent steps. After
the optimization, we will set 6,q to the solution and iteratively proceed to the next round.

3.2 PPO

PPO is an easy-to-implement method for the optimization problem of (7). Instead of a hard-coded

trust region constraint, PPO performs the unconstrained optimization of a clipped version of L(6):
7o(als)
o014 (al5)

letting rg(als) :=

max E (s a)md™ola [min { ro(als)A™ea (s,a), clip;™® (ro(als)) A (s, a) }]

same as in L(6) same, but with r¢ clipped

The clipping implicitly discourages changing my too much from g, ,. Figure 1 illustrates what
would happen respectively for advantage being positive vs negative and the policy ratio being
clipped vs not clipped.

If the action was good.... If the action was bad....

...and it became more probable the last time
you took a gradient step, don't keep updating
it too far or else the policy might get worse

and it became less probable, don't keep making it
too much less probable or else the policy might
get worse (i.e., don't step too far)

. A<O
. LCLIP A>0
gl 1ot .
...and it became less probable, | you are free
P y . Y .and it became more probable, you are free
to undo that step (in the wrong|direction) I -)
; to undo that step as much as you want

as much as you want . .
(i.e., you can fix your mistakes)

\i

0 1 1+6€

L('Lll’

Figure 1: Plot showing one term for a certain (s, a)-pair of the PPO objective as a function of the
policy ratio rg(als). Credit to this post.

Implementation details. We provide a pseudocode of PPO in Algorithm 2, which should be
useful for you to implement it in hw3.ipynb. The PPO version you will implement in hw3.ipynb is
significantly simplified from a standard version, particularly on 1) how the policy is parameterized
and how 2) the advantages are estimated (line 5). We recommend a standard PPO implementation
(like this one) for regular use cases.

https://stackoverflow.com/questions/46422845/what-is-the-way-to-understand-proximal-policy-optimization-algorithm-in-rl
https://github.com/vwxyzjn/cleanrl

WPI CS 525 / DS 595 - ST: Multi-Agent Decision Making Fall 2025

Algorithm 2 Proximal Policy Optimization (PPO) with clipped objective

1: learner initializes parameter 6 for policy mp;

2: Oo1q < 0;

3: repeat

4: Follow 7y, to collect and store multiple transitions {(s¢, at, r¢, S¢41) };

5 Estimates advantages Ay~ Al (s¢,a1); > Can involve training and using a critic
6 Optimize 0 to maximize

E; {min {rt(e)?lt, Clip%fi (T‘t(e));l\t}}

Tl’e(at|8t)

and E; denotes sampling from the stored transitions;
914 (at]St)

where 7(0) :=

I~

Update parameter 0gq < 0;
: until some stopping criterion is met

o

9: learner outputs policy @ = mg or 7(s) = argmax, 4 mp(a|s) with 6 = 0,q;

	The Policy Optimization Objective
	Policy Gradient Methods: An Introduction
	REINFORCE
	The action-value expression

	Policy Optimization in a Trust Region, Proximal Policy Optimization
	Policy optimization in a trust region.
	PPO

