
WPI CS 525 / DS 595 - ST: Multi-Agent Decision Making Fall 2025

Lecture 3b: Taxonomy of RL Algorithms, Q-Learning

Qi Zhang

Last Updated: October 2025

1 Taxonomy of RL Algorithms

In this note, we begin studying RL algorithms. We will focus on the infinite-horizon, discounted-

reward setting where the MDP is specified by a tuple M = (S,A, P,R, γ) with initial state distri-

bution d0 ∈ ∆(S). The RL agent, or learner, does not know (P,R) a priori and interacts with the

MDP following Protocol 1, where the role of the learner’s RL algorithm is highlighted in green.

Protocol 1 RL interaction (infinite-horizon)

1: learner initializes and will maintain its internal state;

2: repeat over episodes:

3: learner observes initial state s0 ∼ d0 of the current episode;

4: for h = 1, . . . ,H until termination or truncation do ▷ truncation: sH+1 is not terminal

5: learner chooses action ah based on its internal state;

6: learner takes ah and observes next state sh+1 ∼ P (sh, ah) and reward rh = R(sh, ah);

7: learner updates its internal state;

8: end for

9: until some stopping criterion is met

10: learner outputs a policy π̂ based on its internal state;

Crucially, the learner maintains its internal state that 1) gets updated based on the newest transition

(line 7) and 2) determines the very next action to take (line 5). This way, the learner is fully

adaptive: in general, it chooses the current action based on all previous transitions. The learner’s

internal state can include some or all of the following components:

• Value estimates: V : S → R, Q : S ×A → R

• Policy/actor: π : S → ∆(A)

• Replay buffer: D = (s, a, r, s′) storing previous transitions

• Model estimate: (P̂ , R̂) that estimates the ground-truth (P,R) based on previous transitions

RL algorithms are often characterized by what components above are (not) included in the learner’s

internal state. Table 1 provides a (simplified) taxonomy, although it is usually of little importance

to memorize such a table.

2 Tabular Q-Learning

We now introduce our first RL algorithm, Q-Learning. Its key idea is that, in order to find an

optimal policy (by the end of Protocol 1 at line 10), it suffices to find out the optimal Q-value

Q∗ because an optimal policy can be then extracted by acting greedily with respect to it , i.e.,

π∗(s) = argmaxa∈AQ∗(s, a). In Q-learning, the learner’s internal state includes only a Q-value

1

WPI CS 525 / DS 595 - ST: Multi-Agent Decision Making Fall 2025

Table 1: A Taxonomy of RL Algorithms.

Value estimates

V,Q

Policy

π

Model estimate

(P̂ , R̂)

Model-free - - Y

Model-based - - Y

Value-based Y N N

Policy-based N Y N

Actor-critic Y Y N

Tabular Represented by tables, one entry for each (s) or (s, a)

Function Approximation Represented by generic functions

estimate Q : S ×A → R and therefore it is a value-based (and also model-free) RL algorithm. The

goal of Q-learning is to update Q such that it eventually approximates Q∗ well and recommends the

outputs the policy as π̂(s) = argmaxa∈AQ(s, a). Tabular Q-learning represents Q as a table/vector

with |S × A| entries, one entry per (s, a) pair, and, upon a transition (st, at, rt, st+1), updates the

entry of (st, at) as

Q(st, at)← Q(st, at) + αt

(
rt + γmax

a∈A
Q(st+1, a)−Q(st, at)

)
. (1)

Here, the index t is the total number of transitions the learner has experienced in Protocol 1, which

keeps increasing across episodes; αt ∈ (0, 1) controls how aggressive the update is, which in general

depends on t.

To understand why update (1) makes sense, recall Q-value iteration: starting with an arbitrary

Q ∈ R|S×A|, update it iteratively as Q ← T Q where Bellman optimality operator T : R|S×A| →
R|S×A| is defined as:

(T Q)(s, a) := R(s, a) + γ Es′∼P (s,a)

[
max
a∈A

Q(s′, a)

]
(2)

≈ r + γmax
a∈A

Q(s′, a) (3)

where the ≈ approximates the expectation by a single sample of transition (s, a, r, s′) with r =

R(s, a) and s′ ∼ P (s, a). In the planning setting, we can perform the Q-value iteration and we have

the convergence of T kQ → Q∗ as k ∈ ∞, where T k iteratively applies T for k times. In the RL

setting, we cannot perform a full value iteration update (T Q) because (P,R) is unknown. Instead,

upon on a new transition (s, a, r, s′), we update Q(s, a) to be closer to the one-sample target (3):

Q(s, a)← (1− α)Q(s, a) + α

(
r + γmax

a∈A
Q(s′, a)

)
= Q(s, a) + α

(
r + γmax

a∈A
Q(s′, a)−Q(s, a)

)
where α ∈ (0, 1) controls how aggressively Q(s, a) is updated to target (3). Setting (s, a, r, s′) =

(st, at, rt, st+1) and α = αt in the update above recovers (1).

It turns out that, if the following conditions hold, we have the convergence guarantee of Q → Q∗

as t→∞:

• Every (s, a) pair is visited infinitely often.

2

WPI CS 525 / DS 595 - ST: Multi-Agent Decision Making Fall 2025

• αt decreases but not too quickly.

A formal description of the first condition is limt→∞Nt(s, a) = ∞ for any (s, a), where Nt(s, a)

is the number of times (s, a) is visited by t. This means the learner must do exploration when

choosing actions at line 5 in Protocol 1. For example, one can do ϵ-greedy w.r.t. the current Q. A

formal description of the second condition is
∑

t αt =∞,
∑

t α
2
t <∞ (e.g., αt =

1
t satisfies this).

3 Deep Q-Network

The obvious issue of tabular Q-learning is the difficulty of scaling to large state/action spaces.

Function approximation solves this issue by representing the Q-value estimates with a generic

function. The intuition is that, by updating the Q-value on a specific state-action pair, the changes

made to the function will also influence other state-action pairs.

Protocol 2 DQN algorithm

1: learner initializes parameter θ of the Q network and sets replay buffer D = {} and target

network parameter θ̄ = θ;

2: repeat over episodes:

3: learner observes initial state s ∼ d0 of the current episode;

4: for timesteps within the episode do

5: learner chooses action a that is ϵ-greedy w.r.t. Qθ(s, ·); ▷ ϵ usually decreases over time

6: learner takes a and observes next state s′ and reward r;

7: learner add (s, a, r, s′) to replay buffer D;
8: learner samples a batch of N transitions from D;
9: learner takes a gradient step minimizing L(θ);

10: learner sets θ̄ ← θ every c updates of θ; ▷ updates target network periodically

11: end for

12: until some stopping criterion is met

13: learner outputs a policy π̂ as the greedy policy w.r.t. Qθ;

A representative work is Deep Q-Network (DQN), where the Q-value estimates is represented using

a neural network, Qθ : S × A → R where θ is the neural network’s parameters. Although people

tried neural networks for Q-learning before DQN, those prior efforts updated the parameters on the

most recent transition, in a similar fashion as in tabular Q-learning, and observed limited success

due to DQN improved the training (i.e., parameters updating) of the networks with the following

innovations:

• It stores the past transitions in a memory, often referred to as replay buffer, D = {(s, a, r, s′)}.

• On a given transition (s, a, r, s′), it forms target (3) using another network Qθ̄, which is of

the same structure as Qθ but with its parameter θ̄ updated more slowly than θ.

• To update θ, it samples a batch of transitions from the replay buffer and update θ with a

single gradient step to reduce the Q-value estimates with the formed target values.

This leads to the following loss function for network Qθ:

L(θ) =
1

N

N∑
i=1

(
Qθ(si, ai)−

(
ri + γmax

a∈A
Qθ̄(s

′
i, a)

))2

where (si, ai, ri, s
′
i) ∼ D for i = 1, . . . , N.

3

	Taxonomy of RL Algorithms
	Tabular Q-Learning
	Deep Q-Network

