WPI CS 525 / DS 595 - ST: Multi-Agent Decision Making Fall 2025

Lecture 3a: RL Setting, Multi-Armed Bandit
Qi Zhang
Last Updated: September 2025

1 The RL Setting

In the previous lectures, we focused on two problem settings: the planning setting where the (finite-
horizon) MDP of interest M = (S, A, P, R, H) is fully known and we aim to compute an optimal
policy for it, and the generative model setting where (P, R) is unknown but can be queried for any
state-action pair multiple times, and we aim to find an (near-)optimal policy after querying as few
times as possible.

Obviously, the generative model setting relaxes the requirements for planing. In this note, we
introduce the reinforcement learning (RL) setting that is even more relaxed: (P, R) is unknown
and cannot be queried as a generative model; instead, we can only access them through the agent-
environment interactions, i.e., actually taking actions and observing the corresponding next states
and rewards, which is described below:

Protocol 1 MDP interaction (finite-horizon)
1: for episode k =1,..., K do

2: learner observes initial state s; sampled by environment;

3 for timestep h =1,..., H do

4 learner takes action ap; > by an RL algorithm
5: learner observes next state sp41 and reward rj, sampled by environment;

6 end for

7. end for

In Protocol 1, the agent is referred to as the learner to emphasize the fact that we are in the RL
setting. The interaction is repeated over episodes (indexed by k) in this finite-horizon case, and
similar interaction protocols exist for the infinite-horizon case.

RL algorithm. A so-called RL algorithm essentially chooses the action to take at each timestep
(line 4); all other lines are simply the learner observing information revealed by the environment.
In general, the learner adaptively chooses the actions based on all previous information, i.e., the
decision of ay, in episode k is based on

1:k—1 1:k—1 1:k—1 k k .k k k k k
(siiyr »aypy »rig) and (s{,ay,ri,....sp_q,ap_1,7Th_1,5))
the previous k — 1 episodes the in-episode transitions up to the current state

where the superscript indexes the episodes.

RL evaluation. Protocol 1 induces two alternative evaluation criteria for RL algorithms, both of
which have been extensively studied:

e FExploration-exploitation. The first measures the total rewards gathered within the K episodes.
Under this criterion, the learner is asked to balance between doing state-action pairs that are

WPI CS 525 / DS 595 - ST: Multi-Agent Decision Making Fall 2025

less tried (exploration) and redoing the state-action pairs that have been most promising so
far (exploitation).

e Pure exploration. The second ignores the rewards gathered in these episodes; instead, it
further asks the learner to recommend a policy by the end of the interaction and measures
the quality of that policy. Under this criterion, the learner is asked to gather high quality
information within the interaction budget in order to recommend a best possible policy.

For both criteria, the performance of an RL algorithm hinges on how efficiently it explores the
environment through its action selection.

2 Multi-Armed Bandits

Designing and analyzing RL algorithms for full-width MDPs is non-trivial. Many of the challenges,
especially those related to exploration, also manifest in simplified MDP instances known as Multi-
Armed Bandits (MABs). A MAB can be viewed as an MDP with a horizon of H = 1 and a single
state, so the state transition function is out of the picture. To make the problem non-trivial, we
consider the case where the reward upon taking each action is random.

Therefore, with an abuse of notation (to respect the convention), a MAB can be specified by some K
real-valued distributions, {Ri}fil, i.e., the stochastic reward function for K actions or arms. Each
R; is assumed to have bounded support [0, 1] and let p; denote its mean. Accordingly, Protocol 1
reduces to:

Protocol 2 MAB interaction

1: forround t =1,...,7 do

2 learner chooses an arm i; € [K] > chosen by an MAB algorithm;
3: learner observes reward r; ~ R;, > sampled independently;
4: end for

We use the following notations regarding an MAB:

K number of arms/actions

R; reward distribution number of arm 14

7% mean of R;

W= maxie (i) Hi mean of best arm

Aji= " — suboptimality of arm ¢

T total number of rounds

it arm played at round ¢

e~ Ry, reward received at round t

Nip:=3t T{is =i} number of times arm ¢ has been played by end of round ¢

Qi = ﬁt St T{is=1i}rs average reward received from arm i by end of round ¢

For MAB, the exploration-exploitation criterion reduces to maximizing the total reward within the
T rounds, or equivalently, minimizing the regret:

Regret(T) == 3° /(" —re) = Tp* = >0y e (1)

WPI CS 525 / DS 595 - ST: Multi-Agent Decision Making Fall 2025

Intuitively, the regret measures difference between the learner’s reward and the expected reward
by playing the best arm per round, summed over 7" rounds for Regret(T).

In contrast, the pure exploration criterion is formalized by minimizing
o R
B =" —

where 7 is the arm that the learner recommends after T or a certain number of rounds.

Both Regret(T') and A; are random variables because the arms 4; are chosen with randomness and
the individual rewards are sampled from distributions R;,. We typically consider their expectation
(E[Regret(T")]) or provide high probability guarantees. The theoretical analyses of MAB algorithms
often care about the asymptotical behavior of the regret as a function of T, i.e., how quickly the
regret, increases as T' increases.

We next describe some classical algorithms and analyze their regret.

2.1 e-greedy

The e-greedy algorithm is a simple way to balance exploration vs exploitation. At round ¢, w.p. (with
probability) e the learner chooses a random arm; w.p. 1 — € the learner chooses the empirically best
arm:

it ~ Uniform([K]) w.p. ¢ and i = argmax;cg] flit—1 W.p- 1 —€.

Here, € is a constant. Because the learner picks the worst arm, i := arg min yu;, w.p. at least /K
every round, the expected regret is lower bounded as

E[Regret(T)] > (1" —) =T (2)

which scales linearly with T'.

2.2 Explore-then-commit

A simple idea is to try each arm multiple times and then favor the empirically best one.
Exploration by uniform sampling. Suppose we play each arm n times with n being a predefined

positive integer. Let ji; be the average reward of arm i over the n plays. By Hoeffding’s inequality
(recall that the rewards are bounded in [0, 1]), we have, for any € > 0,

Pr (| — pi| > €) < 27 20¢ (3)
=:Bi(e)

We define the e-bad event to be the event where B;(€) occurs for at least one arm i, i.e.,
e-bad event := ;¢ Bi(e).
By the union bound, we have
Pr(e-bad event) = Pr <Ui€[K] Bz-(e)) < D ieik) Pr(Bi(e)) < 2 K e—2ne?

where the last inequality is due to (3).

WPI CS 525 / DS 595 - ST: Multi-Agent Decision Making Fall 2025

Let the e-clean event to be the complement of the e-bad event, i.e.,
e-clean event: |fi; — p;| < € for all arms i € [K]
so we have

Pr(e-clean event) = 1 — Pr(e-bad event) > 1 — 2K e 2 (4)

Exploitation by committing. Let i := arg max;e g1 fli be the empirically best arm after trying
each arm n times. Intuitively, when n is large, the suboptimality of 7, A; = p* — gz, should be
small with high probability. We can make this argument formal. Letting ¢* := arg max;¢ () i be
the actual best arm, decompose the suboptimality as

A; = pir — pg = pir — s + s — 5+ fi; — p; < (1) + (id).
(i) <0 (ii)
Therefore, we have

&2

Pr(A; <e) > Pr (%—clean event) >1-2Ke T (5)

For Homework 3’s 1a, provide a justification for (5).

Regret analysis. In the explore-then-commit algorithm, the learner chooses some integer n; it
plays each arm n times in the first nK rounds and then commits to playing the empirically best
arm 7 in the rest (T — nK) rounds. The analysis above facilitates the following way to decompose
the expected regret based on whether event A; < € occurs or not. The rational is that, conditioned
on A; < €, committing to 7 for the last (7' — nK) rounds incurs small regret; otherwise, the regret
will be large but it happens with the small probability of Pr(A; > €). Formalizing this, we have

E[Regret(T)] = E[Regret(T) | A; < €] Pr(A; <€) + E[Regret(T) | A; > €] Pr(A; >€) (6)
where

E[Regret(T) | A; < ¢l <1-nK +¢(T —nkK) (regret <1 per round during exploration)
PI"(A% < 6) <1
E[Regret(T) | A; > €] <1-T (regret < 1 per round)

€2

Pr(A; >¢) < 2Ke ' (due to (5))
and therefore
n62
E[Regret(T)] < (1 —e)nK +Te+T -2Ke™ 2 =: g(n,¢).

Here, the bound above holds for any € > 0 and any integer n > 0 such that nK < T. Ideally, we
hope to find a realization of (n,€) such that g(n,€) is minimized. However, because a closed-form
minimizer is hard to obtain, we choose a realization of (n, €) (which would depend on T') so g(n,¢€)
scales with T" moderately, e.g., sublinearly if g(n,e) = O(T%) for some 0 < o < 1. To achieve
sublinear scaling, let’s try making the last term of g(n,€) a O(1) term with respect to T', i.e., by
setting

n€2
—2 — _InT sothat T-2Ke 5 =T-2Ke ™" =T.2K.T7' =2K. (7)

WPI CS 525 / DS 595 - ST: Multi-Agent Decision Making Fall 2025

Equivalently, we should set € = 4/ QIET, with n to be chosen later. With this, we have the first two

terms of g(n,€) as

(1—einK+Te<nK+Te=nK+T 21%T::m(n)

where the first inequality amplifies (1 — €) to 1, which turns out to be tolerable. Minimizing g1 (n),
e.g., by setting derivative g (n) = 0, we choose n as

1
_ (T?InT\?)
"\ ek
which gives g1(n) = O (K 5T3 (InT)%), and therefore we have the sublinear bound

E[Regret(T)] < gi(n) +2K = O (K%Tg(ln T)%) (9)

for the explore-then-commit algorithm.

It is not unclear if we can obtain bounds that scale better with 7', for example, by setting (n, €)
differently in (7) (e.g., —% =InT7P).

2.3 UCB

We now introduce an algorithm that employs the principle of optimism in the face of uncertainty
for strategic exploration, which favors actions/arms that we are less certain about. As we do so,
the less certain actions/arms will be better explored and their values/rewards will become more
and more certain. For MABs, the Upper Confidence Bound (UCB) algorithm implements this
idea by, again, the Hoefflindg’s inequality, which also enjoys a regret bound better than that of
explore-then-commit (9).

Assume that the rewards are bounded in [0, 1]. If fi; is the average reward of arm i over n plays of
it, we have

Pr(fi; — pi < —€) < e 2ne’ (10)

For Homework 3’s 1b, provide a justification for (10).

Here, we omit the other one-side inequality, because UCB uses the one above to form a high-
probability upper bound of the true mean: rewriting (10) we have Pr ([Li +e< —,ul-) < 6_2”62, or

TLE2

equivalently, by setting § = e 2" we have

Pr (1 +€(n,d) < p;) <6 where €¢(n,d) = L(;n/‘s) (11)

In words, w.p > 1 — ¢ (i.e., with high confidence), fi; + €(n,d) is an upper bound of the true mean
;. The UCB algorithm selects the arm with the highest upper confidence bound given above: for
round t =1,2,...,T,

. N In(1/6
iy == argmax fij;—1 + B;(0;) where B;(6¢) := €(N;—1,0) = 2J\(7i1{j1)‘ (12)
e , ,
ze[} :ZUCBZ‘J
Recall that NV;;_; is number of times arm 7 has been played by end of round ¢t — 1 and fi;—1 is
the corresponding empirical mean. Here, we let the confidence level §; depend on round number ¢

WPI CS 525 / DS 595 - ST: Multi-Agent Decision Making Fall 2025

and potentially T and K as well. We next detail how to choose §; to obtain a O(\/T) regret bound
(which is better than (9)).

To analyze the regret of the UCB algorithm (12), we use the similar recipe as (6) to decompose the
expected regret conditioned on some good/bad event. The bad event is when the empirical means
are far off the true mean, which happens with small probability due to Hoeffding’s. However, as a
difference from explore-then-commitment, in UCB the number of plays IV; ;—; is a random variable
that depends on previous plays, whereas explore-then-commitment uses a predefined constant n for
exploration. This difference is crucial because Hoeffding’s only applies when the number of samples
n is a constant:

Pr (|ftit—1 — pi| > Bi(0r) where N; ;1 = n for constant n) < 264

bad event E,

Here, the bad event E7, is when arm ¢ has been played exactly n times by end of round ¢t —1 (i.e.,
Ni;it—1 = n) and the empirical mean is far off. We can then bound the probability of the general
bad event:

Pr (‘ﬂi,t—l — M1| Z Bl(ét)) S 2t(5t. (13)

=B

For Homework 3’s 1c, provide a justification for (13) (Hint: Use the union bound over all possible
values that N;;—1 = n can take).

Then, by the union bound over all i € [K] and t € [T'], we can bound the probability of our unclean
event:

K T T
Pr (’/li,t—l — ,u,z\ Z Bz(6t) for any 1 E [K],t S [T]) S ZZQt(St = QKZt(St-
i=1 t=1 t=1

=:unclean event

The corresponding clean event is the complement of unclean:

clean event: |f1; — p;| < B;(0;) for alli € [K],t € [T].

From now on, we try setting §; = § which, to be chosen carefully, does not depend on round number
t but can potentially depend on T and/or K. The probability of unclean is then bounded as

Pr(unclean) < 2K Y7 | 6, = 2K 31 t < 2KT?.

For the unclean event, its contribution the expected regret can therefore be bounded as
E[Regret(T)|unclean] - Pr(unclean) < (1-T) - 2KT?%5 = 2KT°?5.

We would like the bound above to scale as O(T~%) for some a > 0. We here choose a@ = 1 by
setting

J so that E[Regret(T)|unclean] - Pr(unclean) < 2K7T ! (14)

:ﬁ’

while other choices such as a = 0 like in (7) should also work.

WPI CS 525 / DS 595 - ST: Multi-Agent Decision Making Fall 2025

For the clean event, we simply bound Pr(clean) < 1 and decompose the regret per round as

E[Regret(T)|clean] = E Zthl(,u* — 1) | clean} =E [25:1 (u* — p,) | clean

Here, the second equality is intuitively straightforward but requires a rigorous proof using the law
of total expectation which we omit here. Conditioned on the clean event, we bound the per step
regret as

W= i, = pie — i, < UCByey — iy <UCBj, ¢ — piiy = By, (0) = \/ 325, (15)

where in the last equality we set 6y = § = T4

For Homework 3’s 1d, provide a justification for the two inequalities in (15).

Note the bound is vacuous when IV;, ;1 = 0. To fix this, note that by the definition, UCB algorithm
n (12) will choose each arm once in the first K rounds, as a never-chosen arm has a UCB value of
infinity. Thus, we can proceed as

E[Regret(7)|clean] =E [/, (1" — ;) | clean| + B [X0 sy (1" =) | clean]

<1- K—i—E[Et K4l]\?IHT]clean}

The second term above can be bounded by the following tricks

>

t=K+1

KN’LTl
\/ <22\/ i1 <2 VK -\/S8 N1 < 2VKT

’Lt’tl zlml

where the first inequality is due to the “integral trick”, Zm 1 f 07T ~3dy = 2V M; the
second inequality is due to Cauchnychwarz Y ai=(1,a) < HlH2 - lal|5-

Putting it all together, for UCB with § = its expected regret can be bounded as

T4’

E[Regret(T)] < 2KT ' + K +2V2KTInT = O(V2KT InT).

	The RL Setting
	Multi-Armed Bandits
	-greedy
	Explore-then-commit
	UCB

