
WPI CS 525 / DS 595 - ST: Multi-Agent Decision Making Fall 2025

Lecture 3a: RL Setting, Multi-Armed Bandit

Qi Zhang

Last Updated: September 2025

1 The RL Setting

In the previous lectures, we focused on two problem settings: the planning setting where the (finite-

horizon) MDP of interest M = (S,A, P,R,H) is fully known and we aim to compute an optimal

policy for it, and the generative model setting where (P,R) is unknown but can be queried for any

state-action pair multiple times, and we aim to find an (near-)optimal policy after querying as few

times as possible.

Obviously, the generative model setting relaxes the requirements for planing. In this note, we

introduce the reinforcement learning (RL) setting that is even more relaxed: (P,R) is unknown

and cannot be queried as a generative model; instead, we can only access them through the agent-

environment interactions, i.e., actually taking actions and observing the corresponding next states

and rewards, which is described below:

Protocol 1 MDP interaction (finite-horizon)

1: for episode k = 1, . . . ,K do

2: learner observes initial state s1 sampled by environment;

3: for timestep h = 1, . . . ,H do

4: learner takes action ah; ▷ by an RL algorithm

5: learner observes next state sh+1 and reward rh sampled by environment;

6: end for

7: end for

In Protocol 1, the agent is referred to as the learner to emphasize the fact that we are in the RL

setting. The interaction is repeated over episodes (indexed by k) in this finite-horizon case, and

similar interaction protocols exist for the infinite-horizon case.

RL algorithm. A so-called RL algorithm essentially chooses the action to take at each timestep

(line 4); all other lines are simply the learner observing information revealed by the environment.

In general, the learner adaptively chooses the actions based on all previous information, i.e., the

decision of ah in episode k is based on

(s1:k−1
1:H , a1:k−1

1:H , r1:k−1
1:H)︸ ︷︷ ︸

the previous k − 1 episodes

and (sk1, a
k
1, r

k
1 , . . . , s

k
h−1, a

k
h−1, r

k
h−1, s

k
h)︸ ︷︷ ︸

the in-episode transitions up to the current state

where the superscript indexes the episodes.

RL evaluation. Protocol 1 induces two alternative evaluation criteria for RL algorithms, both of

which have been extensively studied:

• Exploration-exploitation. The first measures the total rewards gathered within theK episodes.

Under this criterion, the learner is asked to balance between doing state-action pairs that are

1

WPI CS 525 / DS 595 - ST: Multi-Agent Decision Making Fall 2025

less tried (exploration) and redoing the state-action pairs that have been most promising so

far (exploitation).

• Pure exploration. The second ignores the rewards gathered in these episodes; instead, it

further asks the learner to recommend a policy by the end of the interaction and measures

the quality of that policy. Under this criterion, the learner is asked to gather high quality

information within the interaction budget in order to recommend a best possible policy.

For both criteria, the performance of an RL algorithm hinges on how efficiently it explores the

environment through its action selection.

2 Multi-Armed Bandits

Designing and analyzing RL algorithms for full-width MDPs is non-trivial. Many of the challenges,

especially those related to exploration, also manifest in simplified MDP instances known as Multi-

Armed Bandits (MABs). A MAB can be viewed as an MDP with a horizon of H = 1 and a single

state, so the state transition function is out of the picture. To make the problem non-trivial, we

consider the case where the reward upon taking each action is random.

Therefore, with an abuse of notation (to respect the convention), a MAB can be specified by someK

real-valued distributions, {Ri}Ki=1, i.e., the stochastic reward function for K actions or arms. Each

Ri is assumed to have bounded support [0, 1] and let µi denote its mean. Accordingly, Protocol 1

reduces to:

Protocol 2 MAB interaction

1: for round t = 1, . . . , T do

2: learner chooses an arm it ∈ [K] ▷ chosen by an MAB algorithm;

3: learner observes reward rt ∼ Rit ▷ sampled independently;

4: end for

We use the following notations regarding an MAB:

K number of arms/actions

Ri reward distribution number of arm i

µi mean of Ri

µ∗ := maxi∈[K] µi mean of best arm

∆i := µ∗ − µi suboptimality of arm i

T total number of rounds

it arm played at round t

rt ∼ Rit reward received at round t

Ni,t :=
∑t

s=1 I {is = i} number of times arm i has been played by end of round t

µ̂i,t :=
1

Ni,t

∑t
s=1 I {is = i} rs average reward received from arm i by end of round t

For MAB, the exploration-exploitation criterion reduces to maximizing the total reward within the

T rounds, or equivalently, minimizing the regret:

Regret(T) :=
∑T

t=1(µ
∗ − rt) = Tµ∗ −

∑T
t=1 rt (1)

2

WPI CS 525 / DS 595 - ST: Multi-Agent Decision Making Fall 2025

Intuitively, the regret measures difference between the learner’s reward and the expected reward

by playing the best arm per round, summed over T rounds for Regret(T).

In contrast, the pure exploration criterion is formalized by minimizing

∆î = µ∗ − µî

where î is the arm that the learner recommends after T or a certain number of rounds.

Both Regret(T) and ∆î are random variables because the arms it are chosen with randomness and

the individual rewards are sampled from distributions Rit . We typically consider their expectation

(E[Regret(T)]) or provide high probability guarantees. The theoretical analyses of MAB algorithms

often care about the asymptotical behavior of the regret as a function of T , i.e., how quickly the

regret increases as T increases.

We next describe some classical algorithms and analyze their regret.

2.1 ϵ-greedy

The ϵ-greedy algorithm is a simple way to balance exploration vs exploitation. At round t, w.p. (with

probability) ϵ the learner chooses a random arm; w.p. 1− ϵ the learner chooses the empirically best

arm:

it ∼ Uniform([K]) w.p. ϵ and it = argmaxi∈[K] µ̂i,t−1 w.p. 1− ϵ.

Here, ϵ is a constant. Because the learner picks the worst arm, i := argminµi, w.p. at least ϵ/K

every round, the expected regret is lower bounded as

E[Regret(T)] ≥ (µ∗ − µi)
ϵ

K
T (2)

which scales linearly with T .

2.2 Explore-then-commit

A simple idea is to try each arm multiple times and then favor the empirically best one.

Exploration by uniform sampling. Suppose we play each arm n times with n being a predefined

positive integer. Let µ̂i be the average reward of arm i over the n plays. By Hoeffding’s inequality

(recall that the rewards are bounded in [0, 1]), we have, for any ϵ > 0,

Pr
(
|µ̂i − µi| ≥ ϵ︸ ︷︷ ︸

=:Bi(ϵ)

)
≤ 2e−2nϵ2 . (3)

We define the ϵ-bad event to be the event where Bi(ϵ) occurs for at least one arm i, i.e.,

ϵ-bad event :=
⋃

i∈[K]Bi(ϵ).

By the union bound, we have

Pr(ϵ-bad event) = Pr
(⋃

i∈[K]Bi(ϵ)
)
≤

∑
i∈[K] Pr(Bi(ϵ)) ≤ 2Ke−2nϵ2

where the last inequality is due to (3).

3

WPI CS 525 / DS 595 - ST: Multi-Agent Decision Making Fall 2025

Let the ϵ-clean event to be the complement of the ϵ-bad event, i.e.,

ϵ-clean event: |µ̂i − µi| < ϵ for all arms i ∈ [K]

so we have

Pr(ϵ-clean event) = 1− Pr(ϵ-bad event) ≥ 1− 2Ke−2nϵ2 . (4)

Exploitation by committing. Let î := argmaxi∈[K] µ̂i be the empirically best arm after trying

each arm n times. Intuitively, when n is large, the suboptimality of î, ∆î = µ∗ − µî, should be

small with high probability. We can make this argument formal. Letting i∗ := argmaxi∈[K] µi be

the actual best arm, decompose the suboptimality as

∆î = µi∗ − µî = µi∗ − µ̂i∗︸ ︷︷ ︸
(i)

+ µ̂i∗ − µ̂î︸ ︷︷ ︸
≤0

+ µ̂î − µî︸ ︷︷ ︸
(ii)

≤ (i) + (ii).

Therefore, we have

Pr(∆î < ϵ) ≥ Pr
(
ϵ
2 -clean event

)
≥ 1− 2Ke−

nϵ2

2 (5)

For Homework 3’s 1a, provide a justification for (5).

Regret analysis. In the explore-then-commit algorithm, the learner chooses some integer n; it

plays each arm n times in the first nK rounds and then commits to playing the empirically best

arm î in the rest (T − nK) rounds. The analysis above facilitates the following way to decompose

the expected regret based on whether event ∆î < ϵ occurs or not. The rational is that, conditioned

on ∆î < ϵ, committing to î for the last (T − nK) rounds incurs small regret; otherwise, the regret

will be large but it happens with the small probability of Pr(∆î ≥ ϵ). Formalizing this, we have

E[Regret(T)] = E[Regret(T) | ∆î < ϵ] Pr(∆î < ϵ) + E[Regret(T) | ∆î ≥ ϵ] Pr(∆î ≥ ϵ) (6)

where

E[Regret(T) | ∆î < ϵ] ≤ 1 · nK + ϵ(T − nK) (regret ≤ 1 per round during exploration)

Pr(∆î < ϵ) ≤ 1

E[Regret(T) | ∆î ≥ ϵ] ≤ 1 · T (regret ≤ 1 per round)

Pr(∆î ≥ ϵ) ≤ 2Ke−
nϵ2

2 (due to (5))

and therefore

E[Regret(T)] ≤ (1− ϵ)nK + Tϵ+ T · 2Ke−
nϵ2

2 =: g(n, ϵ).

Here, the bound above holds for any ϵ > 0 and any integer n > 0 such that nK ≤ T . Ideally, we

hope to find a realization of (n, ϵ) such that g(n, ϵ) is minimized. However, because a closed-form

minimizer is hard to obtain, we choose a realization of (n, ϵ) (which would depend on T) so g(n, ϵ)

scales with T moderately, e.g., sublinearly if g(n, ϵ) = O(Tα) for some 0 < α < 1. To achieve

sublinear scaling, let’s try making the last term of g(n, ϵ) a O(1) term with respect to T , i.e., by

setting

−nϵ2

2 = − lnT so that T · 2Ke−
nϵ2

2 = T · 2Ke− lnT = T · 2K · T−1 = 2K. (7)

4

WPI CS 525 / DS 595 - ST: Multi-Agent Decision Making Fall 2025

Equivalently, we should set ϵ =
√

2 lnT
n , with n to be chosen later. With this, we have the first two

terms of g(n, ϵ) as

(1− ϵ)nK + Tϵ ≤ nK + Tϵ = nK + T
√

2 lnT
n =: g1(n)

where the first inequality amplifies (1− ϵ) to 1, which turns out to be tolerable. Minimizing g1(n),

e.g., by setting derivative g′1(n) = 0, we choose n as

n =

(
T 2 lnT

2K2

) 1
3

(8)

which gives g1(n) = O
(
K

1
3T

2
3 (lnT)

1
3

)
, and therefore we have the sublinear bound

E[Regret(T)] ≤ g1(n) + 2K = O
(
K

1
3T

2
3 (lnT)

1
3

)
(9)

for the explore-then-commit algorithm.

It is not unclear if we can obtain bounds that scale better with T , for example, by setting (n, ϵ)

differently in (7) (e.g., −nϵ2

2 = lnT−β).

2.3 UCB

We now introduce an algorithm that employs the principle of optimism in the face of uncertainty

for strategic exploration, which favors actions/arms that we are less certain about. As we do so,

the less certain actions/arms will be better explored and their values/rewards will become more

and more certain. For MABs, the Upper Confidence Bound (UCB) algorithm implements this

idea by, again, the Hoefflindg’s inequality, which also enjoys a regret bound better than that of

explore-then-commit (9).

Assume that the rewards are bounded in [0, 1]. If µ̂i is the average reward of arm i over n plays of

it, we have

Pr
(
µ̂i − µi ≤ −ϵ

)
≤ e−2nϵ2 (10)

For Homework 3’s 1b, provide a justification for (10).

Here, we omit the other one-side inequality, because UCB uses the one above to form a high-

probability upper bound of the true mean: rewriting (10) we have Pr
(
µ̂i + ϵ ≤ −µi

)
≤ e−2nϵ2 , or

equivalently, by setting δ = e−2nϵ2 we have

Pr (µ̂i + ϵ(n, δ) ≤ µi) ≤ δ where ϵ(n, δ) :=

√
ln (1/δ)

2n (11)

In words, w.p ≥ 1− δ (i.e., with high confidence), µ̂i + ϵ(n, δ) is an upper bound of the true mean

µi. The UCB algorithm selects the arm with the highest upper confidence bound given above: for

round t = 1, 2, . . . , T ,

it := argmax
i∈[K]

µ̂i,t−1 +Bi(δt)︸ ︷︷ ︸
=:UCBi,t

where Bi(δt) := ϵ(Ni,t−1, δt) =
√

ln (1/δt)
2Ni,t−1

. (12)

Recall that Ni,t−1 is number of times arm i has been played by end of round t − 1 and µ̂i,t−1 is

the corresponding empirical mean. Here, we let the confidence level δt depend on round number t

5

WPI CS 525 / DS 595 - ST: Multi-Agent Decision Making Fall 2025

and potentially T and K as well. We next detail how to choose δt to obtain a O(
√
T) regret bound

(which is better than (9)).

To analyze the regret of the UCB algorithm (12), we use the similar recipe as (6) to decompose the

expected regret conditioned on some good/bad event. The bad event is when the empirical means

are far off the true mean, which happens with small probability due to Hoeffding’s. However, as a

difference from explore-then-commitment, in UCB the number of plays Ni,t−1 is a random variable

that depends on previous plays, whereas explore-then-commitment uses a predefined constant n for

exploration. This difference is crucial because Hoeffding’s only applies when the number of samples

n is a constant:

Pr
(
|µ̂i,t−1 − µi| ≥ Bi(δt) where Ni,t−1 = n for constant n︸ ︷︷ ︸

bad event En
i,t

)
≤ 2δt

Here, the bad event En
i,t is when arm i has been played exactly n times by end of round t− 1 (i.e.,

Ni,t−1 = n) and the empirical mean is far off. We can then bound the probability of the general

bad event:

Pr
(
|µ̂i,t−1 − µi| ≥ Bi(δt)︸ ︷︷ ︸

=:Ei,t

)
≤ 2tδt. (13)

For Homework 3’s 1c, provide a justification for (13) (Hint: Use the union bound over all possible

values that Ni,t−1 = n can take).

Then, by the union bound over all i ∈ [K] and t ∈ [T], we can bound the probability of our unclean

event:

Pr
(
|µ̂i,t−1 − µi| ≥ Bi(δt) for any i ∈ [K], t ∈ [T]︸ ︷︷ ︸

=:unclean event

)
≤

K∑
i=1

T∑
t=1

2tδt = 2K
T∑
t=1

tδt.

The corresponding clean event is the complement of unclean:

clean event: |µ̂i − µi| < Bi(δt) for all i ∈ [K], t ∈ [T].

From now on, we try setting δt = δ which, to be chosen carefully, does not depend on round number

t but can potentially depend on T and/or K. The probability of unclean is then bounded as

Pr(unclean) ≤ 2K
∑T

t=1 tδt = 2Kδ
∑T

t=1 t ≤ 2KT 2δ.

For the unclean event, its contribution the expected regret can therefore be bounded as

E[Regret(T)|unclean] · Pr(unclean) ≤ (1 · T) · 2KT 2δ = 2KT 3δ.

We would like the bound above to scale as O(T−α) for some α ≥ 0. We here choose α = 1 by

setting

δ =
1

T 4
, so that E[Regret(T)|unclean] · Pr(unclean) ≤ 2KT−1 (14)

while other choices such as α = 0 like in (7) should also work.

6

WPI CS 525 / DS 595 - ST: Multi-Agent Decision Making Fall 2025

For the clean event, we simply bound Pr(clean) ≤ 1 and decompose the regret per round as

E[Regret(T)|clean] = E
[∑T

t=1(µ
∗ − rt) | clean

]
= E

[∑T
t=1(µ

∗ − µit) | clean
]

Here, the second equality is intuitively straightforward but requires a rigorous proof using the law

of total expectation which we omit here. Conditioned on the clean event, we bound the per step

regret as

µ∗ − µit = µi∗ − µit ≤ UCBi∗,t − µit ≤ UCBit,t − µit = Bit(δt) =
√

2 lnT
Nit,t−1

(15)

where in the last equality we set δt = δ = 1
T 4 .

For Homework 3’s 1d, provide a justification for the two inequalities in (15).

Note the bound is vacuous when Nit,t−1 = 0. To fix this, note that by the definition, UCB algorithm

in (12) will choose each arm once in the first K rounds, as a never-chosen arm has a UCB value of

infinity. Thus, we can proceed as

E[Regret(T)|clean] =E
[∑K

t=1(µ
∗ − µit) | clean

]
+ E

[∑T
t=K+1(µ

∗ − µit) | clean
]

≤1 ·K + E
[∑T

t=K+1

√
2 lnT
Nit,t−1

| clean
]

The second term above can be bounded by the following tricks

T∑
t=K+1

√
1

Nit,t−1
=

K∑
i=1

Ni,T−1∑
m=1

√
1

m
≤

K∑
i=1

2
√

Ni,T−1 ≤ 2 ·
√
K ·

√∑K
i=1Ni,T−1 ≤ 2

√
KT

where the first inequality is due to the “integral trick”,
∑M

m=1

√
1
m ≤

∫M
x=0 x

− 1
2dx = 2

√
M ; the

second inequality is due to Cauchy–Schwarz,
∑K

i=1 ai = ⟨1,a⟩ ≤ ∥1∥2 · ∥a∥2.

Putting it all together, for UCB with δ = 1
T 4 , its expected regret can be bounded as

E[Regret(T)] ≤ 2KT−1 +K + 2
√
2KT lnT = O(

√
2KT lnT).

7

	The RL Setting
	Multi-Armed Bandits
	-greedy
	Explore-then-commit
	UCB

