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1 Concentration Inequalities and Union Bound
Theorem 1 (The union bound). Let Eq, Es, ..., E, be a collection of events. Then,
n n
Pr (U E) <> Pr(E).
i=1 i=1

Additionally, if Eq, Es, ... is a countably infinite collection of events, then:

Theorem 2 (Hoeffding’s inequality). Let n be a constant and Xi,..., X, be independent random
variables on R such that X; is bounded in [a;, b;]. Let Sy =3 ;" X;. Then for allt > 0,

Pr (S, —E[S,] >t) < o 2%/ i (bi—ai)®
Remarks:

e Applying Theorem 2 to {—X;}I ;, we obtain the other one-sided inequality: Pr (S, — E[S,] < —t) <
e=2%) it (bi—ai)? Applying the union bound to both one-sided inequ2alities, we obtain the
often used two-sided bound: Pr (|S, — E [S,]| > t) < 228/ Xia(bimai)”,

e When all variables share the same support [a,b] and we compare the empirical average with
the true mean, the two-sided bound reduces to

P (

Setting § := 2e=282/(=0)* ¢ e the probability of failure and solving it for ¢, we can rephrase
the result as follows:

5. E[S)
n n

Z t) S 28—2nt2/(b—a)2.

With probability > 1 — 4, <(b—a)\/—In-.

S, EIS,]
n

e The number of variables, n, is a constant in the theorem statement. When n is a random vari-
able, Hoeffding’s inequality still applies if n does not depend on the realization of X7, ..., X,.
Otherwise, Hoeffding’s inequality can be used with the union bound over possible realizations
of n.

e We refer to section 6.3.4 of this note for an example of using Hoeffding’s inequality with the
union bound.


https://courses.cs.washington.edu/courses/cse312/20su/files/student_drive/6.3.pdf

WPI CS 525 / DS 595 - ST: Multi-Agent Decision Making Fall 2025

2 Tabular Certainty-Equivalence with Generative Models

Certainty-equivalence is a model-based method that estimates unknown quantities of the MDP
of interest from data and performs policy optimization with the estimation as if it were true.
Certainty-equivalence explicitly stores an estimated MDP and performs planning after all the data
are collected.

This note focuses on the setting where (only) the transition function P of an finite-horizon MDP
M = (S, A, P,R,H) is unknown but can be queried as a generative model to draw samples s’ ~
Py(s,a) for any (s,a,h). As the problem is still non-trivial even when reward function R is known,
we therefore assume it is known for simplicity. To identify an (near-)optimal policy for M, we can
estimate P from samples from it. If we query the (s,a,h) tuple ng, ) times and get next-state

samples {s}};""", tabular certainty-equivalence estimates Py (s,a) as

Ns.a,h

P, (s']s,a) = ! Z 1[s;=5].

Ns,a,h i—1

We assume every (s,a,h) gets the same number of next-state samples and write n = ng 4. This
way, we obtain the estimated MDP M= (S, A, P,R,H ) and its optimal policy 7 as a function of n.
We are interested in providing high probability guarantees for the quality of 7 in the original MDP.
Specifically, we aim to show, when n is large, V1 “(s1) — V1 ( ) is small with high probability
for any initial state s, where 7* is an optimal policy for M.

2.1 Coarse analysis

Intuitively, VM7 — VM7 ig small because, when n is large, P ~ P and therefore M ~ M , S0 T
that is optimal for M should be near-optimal for M. This reasoning can be formalized using the
following error decomposition:

M () VIM’%(S)
=V () = VI ) Y () - W) 4R ) = 1)

< 0 as 7 is optimal for M
<V () = VT () + 1T () = V().
(i) (i)

The simulation lemma. Terms (i) and (ii) are small because of the same reason: whenever the
two MDPs M and M close (in terms of their transition functions), their value functions are also
close. This statement is made precise by Lemma 3 known as the simulation lemma, where we use
the following notation: P} is treated as a matrix of shape |S x A| x S with entries Py (s'|s, a) where
(s,a) indexing rows and s’ indexing columns; value function V}, is treated as a column vector of
shape |S| with its s-th entry being V3 (s). Therefore, P,V 41 is a matrix-vector product yielding a
vector of size |S x A| with the (s, a)-th entry

[PrnViii](s,a) = Z Pi(s'|s,a)Vig1(s") = Egop, (s,0) [Vag1(s)]-
s'eS
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Lemma 3 (Simulation lemma). Let MDPs M and M differ only by their transition functions P
and P. For any policy m and (s,h), we have

H

VT () = VI () = 3 By, ayettinloncs [[( - B) Vi G_J
i=h o

H
= ;E(si,ai)’“ﬁyﬂshzs |:[<PZ N l) Vlﬁﬁﬂ] (Sivai):| '

ge

)

A proof of Lemma 3 is deferred to Section 3 as an optional reading. Lemma 3 quantifies the
discrepancy between the value functions by the discrepancy between the transition functions of the
two MDPs, which is precisely what we need.

Concentration of P ~ P. We will assume reward is bounded and, without loss of generality,
bounded in [0, 1], i.e., Rp(s,a) € [0, 1] for any (s, a, h). Therefore, the value function is bounded as

Vi7(s) € [0, H] for any , h and therefore ||V;|| _ := max, V;"(s) < H. Noting [(Ph — ﬁh) VL | <

HPh(s,a) - ﬁh(s,a)Hl ||Vl by Cauchy-Schwarz (the dual norm form), it therefore suffices to

provide a high probability guarantee of the 1 norm when n is large, which we give here using
Hoeffding’s inequality with the union bound:

(1) Fix any (s,a,h,s’) and define random variables X; := 1[s] = §'],i = 1,...,n for the n next-
state samples. Show in your Homework 2’s 3a that, by applying Hoeffding’s inequality, we
have: With probability > 1 — 6, ‘ﬁh (¢'|s,a) — Py, (s’\s,a)‘ <4/5=In(3).

(2) Fix any (s,a,h). Show in your Homework 2’s 3b that, by applying the union bound over
all s € S on top of step (1), we have: With probability > 1 — 4,

|Puto0) = Puts. ], - %(ﬁh (s'15.0) = Pa (s']s.a)| < 18|m.

Hint: To achieve the failure probability of §, we split the ¢ in step (1) evenly among all s'.

(3) We then apply the union bound over all (s,a,h) on top of step (2). To achieve failure
probability of §, we split the § in step (2) evenly among all (s, a, h): With probability > 1 —4,

N S
HPh(s,a) - Ph(s,a)H1 < ‘S’\/Zln In (5/(152”’/’1’[{)) for all (s,a,h).
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Putting it together. We are ready to make the following statement for terms (i) and (ii) : With
probability > 1 — 6,

(i) =V () = VT ()

M= 1= T

E(sn,an)~Ma+|s1=s :[(Ph - ﬁh) th‘z’f*} (sh,am] (3¢)

OJ (3d)

E (s, an)~M,m*|s1=s HPh(Sh,ah) - Ph(Sh,ah)Hl : H el

IN

2|S|
E(sh,ah)NM,'/r*|51=s ’S‘\/ 6/ |SHA‘H)> H (3@)

2 2|SPLAIHY _
=|S|H \/2n In ( 3 =:€(n,9)

and (ii) < €(n,0) for the same reason.

>
Il
—_

To achieve an total error for €, we can choose n large enough such that €(n,d) < €/2, which leads
to Proposition 1.

Proposition 1. Given any (¢,0) choosing n large enough such that €(n,d) < €/2, with probability
>1—0, we have VIM’7T (s) — VlM’Tr(s) < € for all initial state s.

3 Proof of Lemma 3 (The Simulation Lemma)

We will prove the first equality below; the second can be obtained by the relabeling of (M, M ) —
(M, M). The key idea is to unroll the timesteps using the Bellman equations.

Without loss of generality, we will show the case of h = 1. Writing s; = s, we have

—

VM (s1) — VM (s1)
=K

—

a1~71(s1) _inm (317 al)] - Ea1~ﬂ’1(81) [Qi\/lﬂr (317 al):|

:Ea1~7r1(81) Rl(sl,al) + |:P1‘/'2M77"} :| — Ea1~7r1(81) |:R1(81,a1) + |:ﬁ1v’2M,7r} . al):|

(s1,a1)

_Pl‘/ZMJr - ﬁIVQM,TK'i| :|
L (s1,a1)

_P1V2M7Tr B P1V2M,7r +P1V2M,7r _ ﬁl‘/QM,er )]
L $1,a1

=Eq oy (s1) :Pl (VQMJT - Vzﬁ’ﬂﬂ (sml)] +Eajomi(s1) H(Pl Pl) v ﬂ} (51,a1):|

@) (ii)
At this point, note term (ii) is the very first summand of the RHS in the lemma’s first equality

(i.e., our goal). For term (i), we have
. M, ]/\/[\,71'
(1) :Ea1~7r1(s1) |:E$2~P1(51,a1) |:VY2 (52) - V2 (82):|:|

M, ]\//\[,7r
:E52~M,7r\51 {‘/2 " (s2) — Vs (32)}
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where V3™ (s9) — VY™ (s5) can be expanded the same way as V""" (s1) — V""" (s1) above. Recur-
sively expanding all the way down to the last timestep H, we obtain

VM7 (s1) = VM7 (s1)

< —
+ ZE(sh,ah)NMﬂT\sl H(Ph — ]3h> Vhf\iiﬂ}

hel (Sh,,ah)]

:ESH,CLHNMJT\Sl |:[PH (VPAI/{S B V%T)} :|
(sm,am)

_ M _ M _
—OasVH_'_l—VH_'_1 =0

which completes the proof.



	Concentration Inequalities and Union Bound
	Tabular Certainty-Equivalence with Generative Models
	Coarse analysis

	Proof of Lemma 3 (The Simulation Lemma)

