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1 Concentration Inequalities and Union Bound

Theorem 1 (The union bound). Let E1, E2, . . . , En be a collection of events. Then,

Pr

(
n⋃

i=1

Ei

)
≤

n∑
i=1

Pr (Ei) .

Additionally, if E1, E2, . . . is a countably infinite collection of events, then:

Pr

( ∞⋃
i=1

Ei

)
≤

∞∑
i=1

Pr (Ei) .

Theorem 2 (Hoeffding’s inequality). Let n be a constant and X1, . . . , Xn be independent random

variables on R such that Xi is bounded in [ai, bi]. Let Sn :=
∑n

i=1Xi. Then for all t > 0,

Pr (Sn − E [Sn] ≥ t) ≤ e−2t2/
∑n

i=1(bi−ai)
2

.

Remarks:

• Applying Theorem 2 to {−Xi}ni=1, we obtain the other one-sided inequality: Pr (Sn − E [Sn] ≤ −t) ≤
e−2t2/

∑n
i=1(bi−ai)

2

. Applying the union bound to both one-sided inequalities, we obtain the

often used two-sided bound: Pr (|Sn − E [Sn]| ≥ t) ≤ 2e−2t2/
∑n

i=1(bi−ai)
2

.

• When all variables share the same support [a, b] and we compare the empirical average with

the true mean, the two-sided bound reduces to

Pr

(∣∣∣∣Sn

n
− E [Sn]

n

∣∣∣∣ ≥ t

)
≤ 2e−2nt2/(b−a)2 .

Setting δ := 2e−2nt2/(b−a)2 to be the probability of failure and solving it for t, we can rephrase

the result as follows:

With probability ≥ 1− δ,

∣∣∣∣Sn

n
− E [Sn]

n

∣∣∣∣ ≤ (b− a)

√
1

2n
ln

2

δ
.

• The number of variables, n, is a constant in the theorem statement. When n is a random vari-

able, Hoeffding’s inequality still applies if n does not depend on the realization of X1, . . . , Xn.

Otherwise, Hoeffding’s inequality can be used with the union bound over possible realizations

of n.

• We refer to section 6.3.4 of this note for an example of using Hoeffding’s inequality with the

union bound.
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2 Tabular Certainty-Equivalence with Generative Models

Certainty-equivalence is a model-based method that estimates unknown quantities of the MDP

of interest from data and performs policy optimization with the estimation as if it were true.

Certainty-equivalence explicitly stores an estimated MDP and performs planning after all the data

are collected.

This note focuses on the setting where (only) the transition function P of an finite-horizon MDP

M = (S,A, P,R,H) is unknown but can be queried as a generative model to draw samples s′ ∼
Ph(s, a) for any (s, a, h). As the problem is still non-trivial even when reward function R is known,

we therefore assume it is known for simplicity. To identify an (near-)optimal policy for M , we can

estimate P from samples from it. If we query the (s, a, h) tuple ns,a,h times and get next-state

samples {s′i}
ns,a,h

i=1 , tabular certainty-equivalence estimates Ph(s, a) as

P̂h

(
s′|s, a

)
=

1

ns,a,h

ns,a,h∑
i=1

1
[
s′i = s′

]
.

We assume every (s, a, h) gets the same number of next-state samples and write n ≡ ns,a,h. This

way, we obtain the estimated MDP M̂ := (S,A, P̂ , R,H) and its optimal policy π̂ as a function of n.

We are interested in providing high probability guarantees for the quality of π̂ in the original MDP.

Specifically, we aim to show, when n is large, V M,π∗

1 (s1) − V M,π̂
1 (s) is small with high probability

for any initial state s, where π∗ is an optimal policy for M .

2.1 Coarse analysis

Intuitively, V M,π∗ − V M,π̂ is small because, when n is large, P̂ ≈ P and therefore M̂ ≈ M , so π̂

that is optimal for M̂ should be near-optimal for M . This reasoning can be formalized using the

following error decomposition:

V M,π∗

1 (s)− V M,π̂
1 (s)

=V M,π∗

1 (s)− V M̂,π∗

1 (s) + V M̂,π∗

1 (s)− V M̂,π̂
1 (s)︸ ︷︷ ︸

≤ 0 as π̂ is optimal for M̂

+V M̂,π̂
1 (s)− V M,π̂

1 (s)

≤V M,π∗

1 (s)− V M̂,π∗

1 (s)︸ ︷︷ ︸
(i)

+V M̂,π̂
1 (s)− V M,π̂

1 (s)︸ ︷︷ ︸
(ii)

.

The simulation lemma. Terms (i) and (ii) are small because of the same reason: whenever the

two MDPs M and M̂ close (in terms of their transition functions), their value functions are also

close. This statement is made precise by Lemma 3 known as the simulation lemma, where we use

the following notation: Ph is treated as a matrix of shape |S ×A|×S with entries Ph(s
′|s, a) where

(s, a) indexing rows and s′ indexing columns; value function Vh is treated as a column vector of

shape |S| with its s-th entry being Vh(s). Therefore, PhVh+1 is a matrix-vector product yielding a

vector of size |S × A| with the (s, a)-th entry

[PhVh+1](s,a) =
∑
s′∈S

Ph(s
′|s, a)Vh+1(s

′) = Es′∼Ph(s,a)[Vh+1(s
′)].
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Lemma 3 (Simulation lemma). Let MDPs M and M̂ differ only by their transition functions P

and P̂ . For any policy π and (s, h), we have

V M,π
h (s)− V M̂,π

h (s) =

H∑
i=h

E(si,ai)∼M,π|sh=s

[[(
Pi − P̂i

)
V M̂,π
i+1

]
(si,ai)

]

=
H∑
i=h

E
(si,ai)∼M̂,π|sh=s

[[(
Pi − P̂i

)
V M,π
i+1

]
(si,ai)

]
.

A proof of Lemma 3 is deferred to Section 3 as an optional reading. Lemma 3 quantifies the

discrepancy between the value functions by the discrepancy between the transition functions of the

two MDPs, which is precisely what we need.

Concentration of P̂ ≈ P . We will assume reward is bounded and, without loss of generality,

bounded in [0, 1], i.e., Rh(s, a) ∈ [0, 1] for any (s, a, h). Therefore, the value function is bounded as

V π
h (s) ∈ [0, H] for any π, h and therefore ∥V π

h ∥∞ := maxs V
π
h (s) ≤ H. Noting

[(
Ph − P̂h

)
V
]
(s,a)

≤∥∥∥Ph(s, a)− P̂h(s, a)
∥∥∥
1
· ∥V ∥∞ by Cauchy–Schwarz (the dual norm form), it therefore suffices to

provide a high probability guarantee of the ℓ1 norm when n is large, which we give here using

Hoeffding’s inequality with the union bound:

(1) Fix any (s, a, h, s′) and define random variables Xi := 1[s′i = s′], i = 1, . . . , n for the n next-

state samples. Show in your Homework 2’s 3a that, by applying Hoeffding’s inequality, we

have: With probability ≥ 1− δ,
∣∣∣P̂h (s

′|s, a)− Ph (s
′|s, a)

∣∣∣ ≤√ 1
2n ln

(
2
δ

)
.

(2) Fix any (s, a, h). Show in your Homework 2’s 3b that, by applying the union bound over

all s′ ∈ S on top of step (1), we have: With probability ≥ 1− δ,

∥∥∥Ph(s, a)− P̂h(s, a)
∥∥∥
1
=
∑
s′∈S

∣∣∣P̂h

(
s′|s, a

)
− Ph

(
s′|s, a

)∣∣∣ ≤ |S|

√
1

2n
ln

(
2|S|
δ

)
.

Hint: To achieve the failure probability of δ, we split the δ in step (1) evenly among all s′.

(3) We then apply the union bound over all (s, a, h) on top of step (2). To achieve failure

probability of δ, we split the δ in step (2) evenly among all (s, a, h): With probability ≥ 1−δ,

∥∥∥Ph(s, a)− P̂h(s, a)
∥∥∥
1
≤ |S|

√
1

2n
ln

(
2|S|

δ/(|S||A|H)

)
for all (s, a, h).
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Putting it together. We are ready to make the following statement for terms (i) and (ii) : With

probability ≥ 1− δ,

(i) :=V M,π∗

1 (s)− V M̂,π∗

1 (s)

=
H∑

h=1

E(sh,ah)∼M,π∗|s1=s

[[(
Ph − P̂h

)
V M̂,π∗

h+1

]
(sh,ah)

]
(3c)

≤
H∑

h=1

E(sh,ah)∼M,π∗|s1=s

[∥∥∥Ph(sh, ah)− P̂h(sh, ah)
∥∥∥
1
·
∥∥∥V M̂,π∗

h+1

∥∥∥
∞

]
(3d)

≤
H∑

h=1

E(sh,ah)∼M,π∗|s1=s

[
|S|

√
1

2n
ln

(
2|S|

δ/(|S||A|H)

)
·H

]
(3e)

=|S|H2

√
1

2n
ln

(
2|S|2|A|H

δ

)
=: ϵ(n, δ)

and (ii) ≤ ϵ(n, δ) for the same reason.

To achieve an total error for ϵ, we can choose n large enough such that ϵ(n, δ) ≤ ϵ/2, which leads

to Proposition 1.

Proposition 1. Given any (ϵ, δ) choosing n large enough such that ϵ(n, δ) ≤ ϵ/2, with probability

≥ 1− δ, we have V M,π∗

1 (s)− V M,π̂
1 (s) ≤ ϵ for all initial state s.

3 Proof of Lemma 3 (The Simulation Lemma)

We will prove the first equality below; the second can be obtained by the relabeling of (M, M̂) →
(M̂,M). The key idea is to unroll the timesteps using the Bellman equations.

Without loss of generality, we will show the case of h = 1. Writing s1 ≡ s, we have

V M,π
1 (s1)− V M̂,π

1 (s1)

=Ea1∼π1(s1)

[
QM,π

1 (s1, a1)
]
− Ea1∼π1(s1)

[
QM̂,π

1 (s1, a1)
]

=Ea1∼π1(s1)

[
R1(s1, a1) +

[
P1V

M,π
2

]
(s1,a1)

]
− Ea1∼π1(s1)

[
R1(s1, a1) +

[
P̂1V

M̂,π
2

]
(s1,a1)

]
=Ea1∼π1(s1)

[[
P1V

M,π
2 − P̂1V

M̂,π
2

]
(s1,a1)

]
=Ea1∼π1(s1)

[[
P1V

M,π
2 − P1V

M̂,π
2 + P1V

M̂,π
2 − P̂1V

M̂,π
2

]
(s1,a1)

]
=Ea1∼π1(s1)

[[
P1

(
V M,π
2 − V M̂,π

2

)]
(s1,a1)

]
︸ ︷︷ ︸

(i)

+Ea1∼π1(s1)

[[(
P1 − P̂1

)
V M̂,π
2

]
(s1,a1)

]
︸ ︷︷ ︸

(ii)

At this point, note term (ii) is the very first summand of the RHS in the lemma’s first equality

(i.e., our goal). For term (i), we have

(i) =Ea1∼π1(s1)

[
Es2∼P1(s1,a1)

[
V M,π
2 (s2)− V M̂,π

2 (s2)
]]

=Es2∼M,π|s1

[
V M,π
2 (s2)− V M̂,π

2 (s2)
]

4
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where V M,π
2 (s2)−V M̂,π

2 (s2) can be expanded the same way as V M,π
1 (s1)−V M̂,π

1 (s1) above. Recur-

sively expanding all the way down to the last timestep H, we obtain

V M,π
1 (s1)− V M̂,π

1 (s1)

=EsH ,aH∼M,π|s1

[[
PH

(
V M,π
H+1 − V M̂,π

H+1

)]
(sH ,aH)

]
︸ ︷︷ ︸

= 0 as V M,π
H+1 = V M̂,π

H+1 = 0

+
H∑

h=1

E(sh,ah)∼M,π|s1

[[(
Ph − P̂h

)
V M̂,π
h+1

]
(sh,ah)

]

which completes the proof.
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