WPI CS 525 / DS 595 - ST: Multi-Agent Decision Making Fall 2025

Lecture 2a: Generative Models - Monte Carlo Tree Search
Qi Zhang
Last Updated: September 2025

1 Online Planning with a Generative Model

Planning algorithms like value iteration (VI) and policy iteration (PI) solve Bellman (optimality)
equations with the full knowledge of the MDP (e.g., the exact distribution over next states given any
state-action pair). We here consider a more relaxed setting, where transition and reward functions
(P, R) of the underlying (infinite-horizon) MDP M = (S, A, P, R,~) are unknown, but we can
query them for any state-action pair to get samples, s’ ~ P(s,a),r ~ R(s,a), or s',r ~ M(s,a)
as a shorthand. In this setting, we often say we have a simulator or a generative model. In this
note, we restrictively consider MDPs where every trajectory ends in a terminal state after a finite
number of transitions so we can safely choose v = 1, examples including board games like chess
and many others.

Moreover, VI and PI compute an optimal policy purely offline for all possible states and then
look up the policy to select actions to take. While ensuring optimality, such offline planning
methods are not feasible for large state spaces. In this note, we are instead interested in the online
planning paradigm where planning and action execution is interleaved: at the current state, a
certain computation budget is allocated to try to figure out a good action to take; this process is
repeated after taking that action and transiting to a next state. This is much closer to how humans
play games like chess.

2 Monte Carlo Tree Search - The Algorithmic Template

Monte Carlo Tree Search (MCTS) is a algorithmic technique to figure out a good action to take in
current state by progressively building up a search tree where a parent-child connection represents
a transition and nodes in the tree accumulates statistics from multiple sampled episodes. More
specifically, initializing the tree with the only node being the current state as the root, MCTS
repeatedly performs the following procedures as depicted in Figure 1 and outlined in 1 and 2:

1. Selection: From the root, navigate down the tree with transitions sampled from the generative
model and some action-selection rule until a new transition occurs from a leaf node.

2. Expansion: Create a new leaf by attaching that new transition to the tree.

3. Simulation: Starting from the new leaf’s state, simulate a trajectory by the generative model
and some action-selection rule until reaching a terminal state.

4. Backpropagation: Using the rewards from the root to the terminal state, modify the value
estimates along the path.

Each node 7 tracks N, the total number of sampled paths that visited this node’s state, and G‘;Otal
(i.e., T.total_reward in Algorithms 1 and 2), the total reward accumulated from that node to the
terminal states over all N paths. To select a good action from the root node, we hope the empirical

total /), well approximates Q-value of a reasonably good policy, where GtTf’gal is the total

mean of G4

WPI CS 525 / DS 595 - ST: Multi-Agent Decision Making Fall 2025

/—> Selection —> Expansion — Simulation — Backpropagation \

Tree Default
Policy Policy

v
N 4 /

Figure 1: Tllustration of an MCTS iteration (credit to [1]).

reward for all children of the node connected by a branch for action a (respectively for N; ,). In the
typical case where the state space is too huge to be fully explored, Selection (line 4 in Algorithm
2) should strike a balance between exploration of unknown paths and exploitation of historically
promising paths. Expansion grows the tree, often by one leaf per iteration. We hope that each node
on average gets a good number of sampled episodes to accumulate its statistics, so it is important
not to grow the tree too fast. Selection and Expansion together are sometimes referred to as
Tree Policy. Simulation aims to choose actions quickly, usually by some heuristics or just random
action selection. Various algorithmic choices for these procedures give rise to specific instantiations.
Sections 77 and 3 respectively discuss two well-known instantiations from this template, UCT and
AlphaZero.

Implementation details

As above, the algorithmic description of MCTS is often based on the data structure of state node:
a node is associated with a state s along paths in the tree that visit this node, with its children
indexed by (a,s’) for a transition of (s,a,s’). In hw2.ipynb of our Homework 2, we adopt an
alterative implementation that explicitly distinguishes between the state node, referred to as the
V-node, and the action node that is referred to as the @-node. In a path, V-nodes are still associated
with the states therein, while Q-node are associated with the actions. Therefore,

e The two types of nodes are interleaved depth-wise: a V-node has only Q-nodes (but not
V-nodes) as its children and a Q-node has only V-nodes (but not Q-nodes) as its children;

e The root node is always a V-node of current state.

e The expansion happens upon an unseen transition (s, a,s’) starting from a leaf V-node of
state s and grows the tree with a new leaf V-node of state s’ and a new Q-node of action a
as its parent if @ has not been tried, so the leafs are always V-nodes.

e Statistics such as N, 4, GtT?CtLal, and step reward are accumulated at the corresponding Q-nodes,
and V-node can thus access its statistics by aggregating its Q-node children. For example,
N; =3, N, where N; is the number of visits for a V-node 7, which equals to the summation

over its Q-node children.

WPI CS 525 / DS 595 - ST: Multi-Agent Decision Making Fall 2025

Algorithm 1 Monte Carlo Tree Search

1
2
3
4
5:
6
7
8
9

repeat
T < TREEPOLICY (7))
s < T.state
G < DEFAULTPOLICY(S)
Backup(r, G)
until TIMEOUT()
return BESTACTION(7)
: end procedure

10:

11

12:
13:
14:
15:
16:
17:

18

: procedure INITNODE(s)

T.parent <— null

T.state <— s

T.count < 0

T.total_reward < 0
7.children[a][s'] < null, for all a, &’
return 7

: end procedure

: procedure MONTECARLOTREESEARCH(7) > Root node 7

> New leaf 7, total reward G; cumulated from root

> (is total reward cumulated from state s
> Update node statistics along the path

> Pick the approximately optimal root-level action

> Cumulated over timesteps and episodes

WPI CS 525 / DS 595 - ST: Multi-Agent Decision Making

Fall 2025

Algorithm 2 Monte Carlo Tree Search - Procedures

10:
11:
12:
13:
14:
15:
16:
17:

1
2
3
4
5:
6
7
8
9

: procedure TREEPOLICY(7))
T,8 < Tp, To.State
while NONTERMINAL(s) do
a < SELECTACTION(T)
s'yr~ M(s,a)
if 7.childrenla][s'] = null then
7/ +INITNODE(s')
7/ .parent < 7.children]a][s]
7.children|a].reward « r
return 7.children[a|[s']
end if
7.children[a].reward < r
7 < 7.children]a][s']
s s
end while
return 7

end procedure

18:

19

20:
21:
22:
23:
24:
25:
26:
27:

: procedure DEFAULTPOLICY (s)
G=0
while NONTERMINAL(S) do
a ~ DEFAULTACTIONSELECTION(S)
s',r~ M(s,a)
G+—G+r
end while
return G
end procedure

28:

29

30:
31:
32:
33:
34:
35:
36:
37:
38:
39:

: procedure BACKUP(T, G)
repeat
T.total_reward < 7.total_reward + G
T.count <— 7.count + 1
T,a < T.parent
if 7 is not null then
G + G + 7.children[a].reward
end if
until 7 is null
return
end procedure

40:

41

42:
43:

: procedure BESTACTION(T)

> Heuristically select an action

> Sample next state and reward from generative model

> Is this the first observation of s — §'?
> Initialize leaf node for state s’

> Attach leaf node to the tree

> Record r = R(s,a)

> Move on to simulation phase

> Record r = R(s,a)

> Decision policy for simulation

> e.g., randomly select an action from A

> Sample next state and reward from generative model

> (7 is the total reward cumulated from node 7

> a is the action connecting the two nodes

> Add step reward along the path

> Pick the empirically best action at node 7

ZT’ €7 .children[a][‘] 7/ total reward

return ars maX&EA 7/ €7.children[a][-]

end procedure

7/.count

WPI CS 525 / DS 595 - ST: Multi-Agent Decision Making Fall 2025

3 UCT

UCT [2], Upper Confidence Bounds (UCB) applied to Trees, applies the UCB algorithm [3] to the
Selection procedure of MCTS to balance the exploration-exploitation tradeoff. Specifically, UCT’s
Selection selects the action at each (V-)node 7 (line 4 in Algorithm 2) that maximizes the upper
confidence bound on the estimated total reward from that node:

Gtotal IH(N)
argmax UCB(r,a) = —2% +¢ =
%GA () NT,a NT,a

where ¢ > 0 is a hyperparameter controlling how much exploration is favored over exploitation.
References

[1] C.B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen, S. Tavener,
D. Perez, S. Samothrakis, and S. Colton. A survey of monte carlo tree search methods. IEFE
Transactions on Computational Intelligence and Al in Games, 4(1):1-43, March 2012.

[2] Levente Kocsis and Csaba Szepesvari. Bandit based monte-carlo planning. In Proceedings of the
17th European Conference on Machine Learning, ECML’06, pages 282-293, Berlin, Heidelberg,
2006. Springer-Verlag.

[3] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine Learning, 47(2):235-256, May 2002.

	Online Planning with a Generative Model
	Monte Carlo Tree Search - The Algorithmic Template
	UCT

