
WPI CS 525 / DS 595 - ST: Multi-Agent Decision Making Fall 2025

Lecture 2a: Generative Models - Monte Carlo Tree Search

Qi Zhang

Last Updated: September 2025

1 Online Planning with a Generative Model

Planning algorithms like value iteration (VI) and policy iteration (PI) solve Bellman (optimality)

equations with the full knowledge of the MDP (e.g., the exact distribution over next states given any

state-action pair). We here consider a more relaxed setting, where transition and reward functions

(P,R) of the underlying (infinite-horizon) MDP M = (S,A, P,R, γ) are unknown, but we can

query them for any state-action pair to get samples, s′ ∼ P (s, a), r ∼ R(s, a), or s′, r ∼ M(s, a)

as a shorthand. In this setting, we often say we have a simulator or a generative model. In this

note, we restrictively consider MDPs where every trajectory ends in a terminal state after a finite

number of transitions so we can safely choose γ = 1, examples including board games like chess

and many others.

Moreover, VI and PI compute an optimal policy purely offline for all possible states and then

look up the policy to select actions to take. While ensuring optimality, such offline planning

methods are not feasible for large state spaces. In this note, we are instead interested in the online

planning paradigm where planning and action execution is interleaved: at the current state, a

certain computation budget is allocated to try to figure out a good action to take; this process is

repeated after taking that action and transiting to a next state. This is much closer to how humans

play games like chess.

2 Monte Carlo Tree Search - The Algorithmic Template

Monte Carlo Tree Search (MCTS) is a algorithmic technique to figure out a good action to take in

current state by progressively building up a search tree where a parent-child connection represents

a transition and nodes in the tree accumulates statistics from multiple sampled episodes. More

specifically, initializing the tree with the only node being the current state as the root, MCTS

repeatedly performs the following procedures as depicted in Figure 1 and outlined in 1 and 2:

1. Selection: From the root, navigate down the tree with transitions sampled from the generative

model and some action-selection rule until a new transition occurs from a leaf node.

2. Expansion: Create a new leaf by attaching that new transition to the tree.

3. Simulation: Starting from the new leaf’s state, simulate a trajectory by the generative model

and some action-selection rule until reaching a terminal state.

4. Backpropagation: Using the rewards from the root to the terminal state, modify the value

estimates along the path.

Each node τ tracks Nτ , the total number of sampled paths that visited this node’s state, and Gtotal
τ

(i.e., τ.total reward in Algorithms 1 and 2), the total reward accumulated from that node to the

terminal states over all N paths. To select a good action from the root node, we hope the empirical

mean of Gtotal
τ,a /Nτ,a well approximates Q-value of a reasonably good policy, where Gtotal

τ,a is the total

1



WPI CS 525 / DS 595 - ST: Multi-Agent Decision Making Fall 2025

Figure 1: Illustration of an MCTS iteration (credit to [1]).

reward for all children of the node connected by a branch for action a (respectively for Nτ,a). In the

typical case where the state space is too huge to be fully explored, Selection (line 4 in Algorithm

2) should strike a balance between exploration of unknown paths and exploitation of historically

promising paths. Expansion grows the tree, often by one leaf per iteration. We hope that each node

on average gets a good number of sampled episodes to accumulate its statistics, so it is important

not to grow the tree too fast. Selection and Expansion together are sometimes referred to as

Tree Policy. Simulation aims to choose actions quickly, usually by some heuristics or just random

action selection. Various algorithmic choices for these procedures give rise to specific instantiations.

Sections ?? and 3 respectively discuss two well-known instantiations from this template, UCT and

AlphaZero.

Implementation details

As above, the algorithmic description of MCTS is often based on the data structure of state node:

a node is associated with a state s along paths in the tree that visit this node, with its children

indexed by (a, s′) for a transition of (s, a, s′). In hw2.ipynb of our Homework 2, we adopt an

alterative implementation that explicitly distinguishes between the state node, referred to as the

V-node, and the action node that is referred to as the Q-node. In a path, V-nodes are still associated

with the states therein, while Q-node are associated with the actions. Therefore,

• The two types of nodes are interleaved depth-wise: a V-node has only Q-nodes (but not

V-nodes) as its children and a Q-node has only V-nodes (but not Q-nodes) as its children;

• The root node is always a V-node of current state.

• The expansion happens upon an unseen transition (s, a, s′) starting from a leaf V-node of

state s and grows the tree with a new leaf V-node of state s′ and a new Q-node of action a

as its parent if a has not been tried, so the leafs are always V-nodes.

• Statistics such as Nτ,a, G
total
τ,a , and step reward are accumulated at the corresponding Q-nodes,

and V-node can thus access its statistics by aggregating its Q-node children. For example,

Nτ =
∑

aNτ,a where Nτ is the number of visits for a V-node τ , which equals to the summation

over its Q-node children.

2



WPI CS 525 / DS 595 - ST: Multi-Agent Decision Making Fall 2025

Algorithm 1 Monte Carlo Tree Search

1: procedure MonteCarloTreeSearch(τ0) ▷ Root node τ0
2: repeat

3: τ ← TreePolicy(τ0) ▷ New leaf τ , total reward Gi cumulated from root τ0
4: s ← τ .state

5: G ← DefaultPolicy(s) ▷ G is total reward cumulated from state s

6: Backup(τ , G) ▷ Update node statistics along the path

7: until Timeout()

8: return BestAction(τ0) ▷ Pick the approximately optimal root-level action

9: end procedure

10:

11: procedure InitNode(s)

12: τ.parent← null

13: τ.state← s

14: τ.count← 0

15: τ.total reward← 0 ▷ Cumulated over timesteps and episodes

16: τ.children[a][s′]← null, for all a, s′

17: return τ

18: end procedure

3



WPI CS 525 / DS 595 - ST: Multi-Agent Decision Making Fall 2025

Algorithm 2 Monte Carlo Tree Search - Procedures

1: procedure TreePolicy(τ0)

2: τ, s← τ0, τ0.state

3: while Nonterminal(s) do

4: a← SelectAction(τ) ▷ Heuristically select an action

5: s′, r ∼M(s, a) ▷ Sample next state and reward from generative model

6: if τ .children[a][s′] = null then ▷ Is this the first observation of s
a−→ s′?

7: τ ′ ←InitNode(s′) ▷ Initialize leaf node for state s′

8: τ ′.parent← τ .children[a][s′] ▷ Attach leaf node to the tree

9: τ .children[a].reward← r ▷ Record r = R(s, a)

10: return τ .children[a][s′] ▷ Move on to simulation phase

11: end if

12: τ .children[a].reward← r ▷ Record r = R(s, a)

13: τ ← τ .children[a][s′]

14: s← s′

15: end while

16: return τ

17: end procedure

18:

19: procedure DefaultPolicy(s) ▷ Decision policy for simulation

20: G = 0

21: while Nonterminal(s) do

22: a ∼ DefaultActionSelection(s) ▷ e.g., randomly select an action from A
23: s′, r ∼M(s, a) ▷ Sample next state and reward from generative model

24: G← G+ r

25: end while

26: return G

27: end procedure

28:

29: procedure Backup(τ,G) ▷ G is the total reward cumulated from node τ

30: repeat

31: τ .total reward← τ .total reward +G

32: τ .count← τ .count + 1

33: τ, a← τ .parent ▷ a is the action connecting the two nodes

34: if τ is not null then

35: G← G+ τ.children[a].reward ▷ Add step reward along the path

36: end if

37: until τ is null

38: return

39: end procedure

40:

41: procedure BestAction(τ) ▷ Pick the empirically best action at node τ

42: return argmaxa∈A

∑
τ ′∈τ .children[a][·] τ

′.total reward∑
τ ′∈τ .children[a][·] τ

′.count

43: end procedure

4



WPI CS 525 / DS 595 - ST: Multi-Agent Decision Making Fall 2025

3 UCT

UCT [2], Upper Confidence Bounds (UCB) applied to Trees, applies the UCB algorithm [3] to the

Selection procedure of MCTS to balance the exploration-exploitation tradeoff. Specifically, UCT’s

Selection selects the action at each (V-)node τ (line 4 in Algorithm 2) that maximizes the upper

confidence bound on the estimated total reward from that node:

argmax
a∈A

UCB(τ, a) :=
Gtotal

τ,a

Nτ,a
+ c

√
ln(Ns)

Nτ,a

where c > 0 is a hyperparameter controlling how much exploration is favored over exploitation.

References

[1] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen, S. Tavener,

D. Perez, S. Samothrakis, and S. Colton. A survey of monte carlo tree search methods. IEEE

Transactions on Computational Intelligence and AI in Games, 4(1):1–43, March 2012.

[2] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In Proceedings of the

17th European Conference on Machine Learning, ECML’06, pages 282–293, Berlin, Heidelberg,

2006. Springer-Verlag.

[3] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed

bandit problem. Machine Learning, 47(2):235–256, May 2002.

5


	Online Planning with a Generative Model
	Monte Carlo Tree Search - The Algorithmic Template
	UCT

