
WPI CS 525 / DS 595 - ST: Multi-Agent Decision Making Fall 2025

Lecture 1: MDP Basics and Planning

Qi Zhang (qzhang9@wpi.edu)

Last Updated: August 2025

1 Markov Decision Processes: The Finite-Horizon Setting

In reinforcement learning, the interaction between the agent and its environment is often formulated

as a Markov Decision Process (MDP). This note focuses on the finite-horizon setting where an MDP

is specified by tuple M = (S,A, P,R,H):

• State space S. This note only considers finite state spaces.

• Action space A. This note only considers finite action spaces.

• Horizon H. This is a constant positive integer. Let h ∈ [H] := {1, 2, . . . ,H} index the discrete

timesteps.

• Transition function P : S × A× [H] → ∆(S), where is the space of probability distributions

over S. Ph(s
′|s, a) is the probability of transiting to state s′ after taking action a in state s.

• Reward function R : S × A× [H] → [0, 1]. Rh(s, a) is the immediate reward associated with

taking action a in state s at timestep h.

1.1 Interaction protocol

Starting in some state s1 ∈ S, at each timestep h ∈ [H], the agent takes an action ah ∈ A,

obtains the immediate reward rh := Rh(sh, ah), and observes the next state sh+1 ∈ S sampled from

Ph(sh, ah), or sh+1 ∼ Ph (sh, ah). The interaction record

τ = (s1, a1, r1, s2, . . . , sH , aH , rH , sH+1)

is called an episode, which is a trajectory of length H.

The process above can be iterated to form multiple episodes. We often consider the case where the

initial state s1 is fixed. More generally, s1 is generated by sampling from a distribution d1 ∈ ∆(S).
When d1 is of importance to the discussion, we include it as part of the MDP tuple, writing

M = (S,A, P,R,H, d1).

2 Policy and Value

A policy specifies how the actions are chosen. A policy denoted as π : S × [H] → A chooses actions

deterministically based on the current state and the timestep, i.e., ah = πh(sh). More generally,

a policy denoted as π : S × [H] → ∆(A) chooses actions stochastically denoted as ah ∼ πh(sh),

writing the probability as πh(ah|sh). It is important to base the policy on the timestep h, because

the optimal decision-making strategy may well depend on h in this finite-horizon setting. We

therefore often write π = {πh}Hh=1.

Given MDP M = (S,A, P,R,H, d1) and policy π = {πh}Hh=1 in place, one can explicitly write out

the probability of generating any trajectory τ = (s1, a1, r1, s2, . . . , sH , aH , rH , sH+1):

PrM,π(τ) = d1(s1)π1(a1|s1)P1(s2|s1, a1) · · ·πH(aH |sH)PH(sH+1|sH , aH)
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where rewards will be deterministically generated as rh = Rh(sh, ah).

The goal of the agent is to find a policy π that maximizes the expected sum of rewards received

in the future, or values. In MDP M , following policy π from state s ∈ S at timestep h ∈ [H], the

expected cumulative reward to the end is denoted as V M,π
h (s), i.e.,

V M,π
h (s) := EM,π

[
H∑

h′=h

Rh′ (sh′ , ah′) | sh = s

]
,

which is called the state-value. Similarly, the action-value (or Q-value) is defined as

QM,π
h (s, a) := EM,π

[
H∑

h′=h

Rh′ (sh′ , ah′) | sh = s, ah = a

]

i.e., the expected cumulative reward by following policy π in MDP M from taking action a in state

s ∈ S at timestep h ∈ [H].

When the MDP M is clear from the context, we often drop superscript/subscript M and write V π
h ,

Qπ
h, Pr

π, Eπ, etc.

The goal of the agent is to find a policy π that maximizes V π
1 (s1) if the initial state s1 is fixed or

Es1∼d1 [V
π
1 (s1)] if the initial state s1 is sampled from distribution d1.

3 Planning in MDPs

Planning refers to the problem of computing a value-maximizing policy given the full MDP spec-

ification M = (S,A, P,R,H). A related problem is policy evaluation, which aims to obtain the

values of a given policy.

3.1 Bellman equation for policy evaluation

Policy evaluation is the problem of finding the values (V π
h and/or Qπ

h) of a given policy π. In the

context of planning, we also assume the full knowledge of the MDP specification M . By definition,

the values can be computed by expanding the expectation, e.g.,

V π
1 (s) =

∑
τ :s1=s

[
Prπ(τ |s1 = s) ·

∑H
h=1 rh

]
where τ : s1 = s enumerates all trajectories with the first state s1 = s and Prπ(τ |s1 = s) =

π1(a1|s1 = s)P1(s2|s1 = s, a1) · · ·πH(aH |sH)PH(sH+1|sH , aH) is the probability of getting such

a trajectory τ by following π starting in s1 = s. This approach is highly inefficient because it

enumerates the trajectories. In particular, there are in total |S × A|H trajectories of length H,

which is exponentially large in horizon H.

A more efficient way to do policy evaluation is based on the principles of dynamic programming.

By definition, the values can be computed recursively via the following Bellman equations: letting

V π
H+1(s) ≡ 0, ∀s ∈ S, a ∈ A, h ∈ [H],

V π
h (s) = Ea∼πh(s)[Q

π
h(s, a)],

Qπ
h(s, a) = Rh(s, a) + Es′∼Ph(s,a)[V

π
h+1(s

′)]
(1)
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where the recursion proceeds backward in time as h = H,H−1, . . . , 1, so the computation is linear

in horizon H.

It is often convenient to rewrite Eq. (1) in a matrix-vector form. Since S and A are assumed to be

finite, upon fixing an arbitrary order of states and actions, we can treat the relevant quantities as

matrices or vectors of proper shapes. Specifically, Eq. (1) can be rewritten as

V π
h =(πh ⊙Qπ

h)1 with V π
h ∈ R|S|, πh, Q

π
h ∈ R|S|×|A|, all-one vector 1 ∈ R|A|,

Qπ
h =Rh + PhV

π
h with Qπ

h, Rh ∈ R|S×A|, Ph ∈ R|S×A|×|S|, V π
h+1 ∈ R|S| .

Note that we treat Qπ
h above as a matrix in the first equation and a vector in the second equation.

3.2 Bellman optimality equation

With a slight modification of replacing the Ea∼πh(s) in Bellman equations with the greedy action

maxa∈A, we obtain the Bellman optimality equations: letting V ∗
H+1(s) ≡ 0, ∀s ∈ S, a ∈ A, h ∈ [H],

V ∗
h (s) := max

a∈A
Q∗

h(s, a),

Q∗
h(s, a) := Rh(s, a) + Es′∼Ph(s,a)[V

∗
h+1(s

′)]
(2)

which recursively define quantities V ∗
h and Q∗

h. Consider the policy that is acting greedy with

respect to Q∗
h, i.e.,

π∗
h(s) := argmax

a∈A
Q∗

h(s, a) ∀s ∈ S (3)

We have Proposition 1 showing that π∗ is an optimal policy with its values equal to V ∗ and Q∗.

Proposition 1. For V ∗ and Q∗ defined in (2) and policy π∗ defined in (3), we have

V ∗
h (s) = V π∗

h (s) = max
π

V π
h (s), Q∗

h(s, a) = Qπ∗
h (s, a) = max

π
Qπ

h(s, a) ∀(s, a, h)

where the maximization is taken over all policies π = {πh}Hh=1.

Proof. We prove it by induction over h = H + 1, H, . . . , 1.

Base case. For h = H+1, we have V ∗
H+1(s) ≡ 0 = V π∗

H+1(s) = maxπ V
π
H+1(s) because V

π
H+1(s) ≡ 0

for any π.

Assume the statement in the proposition holds for h+ 1, i.e., ∀s ∈ S, a ∈ A

V ∗
h+1(s) = V

π∗
h+1:H

h+1 (s) = max
πh+1:H

V
πh+1:H

h+1 (s), Q∗
h+1(s, a) = Q

π∗
h+1:H

h+1 (s, a) = max
πh+1:H

Qπ
h+1(s, a).

Note here we explicitly write V π
h+1 ≡ V

πh+1:H

h+1 (and for Q as well) to emphasize the fact that the

value function for timestep h + 1 does not depend on policy before that timestep. The induction

proceeds to h ∈ [H] in the following three steps.
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1) Q∗
h is optimal. We have, ∀(s, a),

max
π

Qπ
h(s, a)

=max
π

Rh(s, a) + Es′∼Ph(s,a)[V
π
h+1(s

′)] (1a)

=Rh(s, a) + max
π

Es′∼Ph(s,a)[V
π
h+1(s

′)]

=Rh(s, a) + Es′∼Ph(s,a)

[
V

π∗
h+1:H

h+1 (s′)
]

(1b)

=Rh(s, a) + Es′∼Ph(s,a)[V
∗
h+1(s

′)] (Induction hypothesis)

=Q∗
h(s, a) (1c)

2) V ∗
h is optimal. We have, ∀s,

max
π

V π
h (s) =max

π

∑
a

πh(a|s)Qπ
h(s, a)

= max
πh,πh+1:H

∑
a

πh(a|s)Q
πh+1:H

h (s, a)

=max
πh

∑
a

πh(a|s)Q∗
h(s, a) (1d)

=max
a

Q∗
h(s, a)

=V ∗
h (s) (1e)

3) π∗
h:H is optimal. We have, ∀s,

V
π∗
h:H

h (s) =Q
π∗
h+1:H

h (s, ā) (where ā := π∗
h(s) = argmax

a∈A
Q∗

h(s, a))

=Rh(s, ā) + Es′∼Ph(s,ā)

[
V

π∗
h+1:H

h+1 (s′)
]

=Rh(s, ā) + Es′∼Ph(s,ā)

[
V ∗
h+1(s

′)
]

(1f)

=Q∗
h(s, ā)

=max
a

Q∗
h(s, a) = V ∗

h (s)

The proof completes because steps (1,2,3) finish the induction on h.
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