WPI CS 525 / DS 595 - ST: Multi-Agent Decision Making Fall 2025

Lecture 1: MDP Basics and Planning
Qi Zhang (qzhang9@wpi.edu)

Last Updated: August 2025

1 Markov Decision Processes: The Finite-Horizon Setting

In reinforcement learning, the interaction between the agent and its environment is often formulated
as a Markov Decision Process (MDP). This note focuses on the finite-horizon setting where an MDP
is specified by tuple M = (S, A, P,R, H):

e State space S. This note only considers finite state spaces.

e Action space A. This note only considers finite action spaces.

e Horizon H. This is a constant positive integer. Let h € [H| := {1,2,..., H} index the discrete
timesteps.

e Transition function P : S x A x [H] — A(S), where is the space of probability distributions
over S. Py(s'|s,a) is the probability of transiting to state s’ after taking action a in state s.

e Reward function R : S x A x [H] — [0,1]. Rp(s,a) is the immediate reward associated with
taking action a in state s at timestep h.

1.1 Interaction protocol

Starting in some state s; € S, at each timestep h € [H], the agent takes an action aj € A,
obtains the immediate reward ry := Rp(sp, ap), and observes the next state sp11 € S sampled from
Py(sp,ap), or Sp11 ~ Py (sp,ap). The interaction record

7= (81,01,71,52, -, SH, QH,TH, SH+1)
is called an episode, which is a trajectory of length H.

The process above can be iterated to form multiple episodes. We often consider the case where the
initial state s; is fixed. More generally, s; is generated by sampling from a distribution d; € A(S).
When d; is of importance to the discussion, we include it as part of the MDP tuple, writing
M= (S,A,P,R,H,d).

2 Policy and Value

A policy specifies how the actions are chosen. A policy denoted as 7 : S x [H] — A chooses actions
deterministically based on the current state and the timestep, i.e., a, = 7 (sp). More generally,
a policy denoted as 7 : S x [H] — A(A) chooses actions stochastically denoted as ap ~ m(sp),
writing the probability as 7 (ap|sp). It is important to base the policy on the timestep h, because
the optimal decision-making strategy may well depend on h in this finite-horizon setting. We
therefore often write 7 = {m, }/_,.

Given MDP M = (S, A, P, R, H,dy) and policy m = {ﬂh}le in place, one can explicitly write out
the probability of generating any trajectory 7 = (s1,a1,71,52,...,SH, G, "H,SH+1):

PI‘M’ﬂ(T) = d1(81)7T1(a1|81)P1(82|81, al) e 7TH(CLH|8H)PH(SH+1|SH, CLH)

WPI CS 525 / DS 595 - ST: Multi-Agent Decision Making Fall 2025

where rewards will be deterministically generated as rp, = Rp(sp, an)-

The goal of the agent is to find a policy 7 that maximizes the expected sum of rewards received
in the future, or values. In MDP M, following policy 7 from state s € S at timestep h € [H], the
expected cumulative reward to the end is denoted as VhM’”(s), ie.,

VhM’W(S) = I[”E]\/[77r

H
> Ry (swoaw) | sn = 3] ;
W=h

which is called the state-value. Similarly, the action-value (or Q-value) is defined as

}]:/[’ﬂ(s, a) :=Ep

H
Z Ry (spryaps) | sp = s,ap, = a]
W =h

i.e., the expected cumulative reward by following policy 7 in MDP M from taking action a in state
s € S at timestep h € [H].

When the MDP M is clear from the context, we often drop superscript/subscript M and write V}7,
7, Pr™, En, ete.

The goal of the agent is to find a policy 7 that maximizes V|" (s1) if the initial state s; is fixed or
Eg,~d, [V]" (s1)] if the initial state s; is sampled from distribution d;.

3 Planning in MDPs

Planning refers to the problem of computing a value-maximizing policy given the full MDP spec-
ification M = (S, A, P,R, H). A related problem is policy evaluation, which aims to obtain the
values of a given policy.

3.1 Bellman equation for policy evaluation

Policy evaluation is the problem of finding the values (V;" and/or Q}) of a given policy 7. In the
context of planning, we also assume the full knowledge of the MDP specification M. By definition,
the values can be computed by expanding the expectation, e.g.,

V()= Y [Pri(rlsi =) il m)

T:81=8

where 7 : s; = s enumerates all trajectories with the first state s = s and Pr"(7]s; = s) =
mi(ails1 = s)Pi(sals1 = s,a1) - 7wy(ag|sy)Pa(sg+1|sm,am) is the probability of getting such
a trajectory 7 by following 7 starting in s; = s. This approach is highly inefficient because it
enumerates the trajectories. In particular, there are in total |S x A|f trajectories of length H,
which is exponentially large in horizon H.

A more efficient way to do policy evaluation is based on the principles of dynamic programming.
By definition, the values can be computed recursively via the following Bellman equations: letting
Viii(s)=0,Vs€S,ac A h e [H],

Vhﬂ(s) = EaNTrh(s) [QZ(& CL)],

1
QZ(Sa CL) = Rh(S, CL) + ES’NPh(S,a) [Vhﬁ—&—l(sl)] ()

WPI CS 525 / DS 595 - ST: Multi-Agent Decision Making Fall 2025

where the recursion proceeds backward in time as h = H, H — 1, ..., 1, so the computation is linear
in horizon H.

It is often convenient to rewrite Eq. (1) in a matrix-vector form. Since & and A are assumed to be
finite, upon fixing an arbitrary order of states and actions, we can treat the relevant quantities as
matrices or vectors of proper shapes. Specifically, Eq. (1) can be rewritten as

Vir=(m, ©@QF)1 with VjT € R‘Sl, T, QF, € RIS all-one vector 1 € RlAl,
QF =Ry + P, V¥ with QF, Ry, € RIS*AI p, ¢ RIS*AXIS| yr e RIS

Note that we treat QF above as a matrix in the first equation and a vector in the second equation.

3.2 Bellman optimality equation

With a slight modification of replacing the E s) in Bellman equations with the greedy action

ammn

maxge 4, we obtain the Bellman optimality equations: letting Vi ,(s) =0, Vs € S,a € A, h € [H],

V* = 5))
i (5) = max Qi (s, a) o
QZ(& a) = Rh(s> a) + IEs’wP;,,(s,a) [Vh*+1(8/)]
which recursively define quantities V;* and Q}. Consider the policy that is acting greedy with

respect to @}, i.e.,

7 (s) == argmax Q;(s,a) Vs €S (3)
acA

We have Proposition 1 showing that 7* is an optimal policy with its values equal to V* and Q*.

Proposition 1. For V* and Q* defined in (2) and policy 7* defined in (3), we have
Vii(s) = Vi (s) = max VjT(s), Qj(s,a) = QF (s,0) =maxQf(s,a) V(s,a,h)

where the maximization is taken over all policies 7 = {m, }1L_ .

Proof. We prove it by induction over h=H +1,H,..., 1.

Base case. For h = H+1, we have V}j ,(s) =0 = Vg;l(s) = max, Vj(s) because Vi (s) =0
for any .

Assume the statement in the proposition holds for h + 1, ie., Vs € S,a € A

T 1. . T 1.
V}:(—i-l(s) = Vh-ﬁ-lHAH (S) = ﬂ%}i‘}; VhﬂﬁflAH(S)a QZ—‘,—I(Sv a) = Qh:.-;LH (Sv CL) = Wligal’}f‘i QZ—I—I(Sa CL)-

Note here we explicitly write V7, | = Vhﬂjfle (and for @Q as well) to emphasize the fact that the

value function for timestep h + 1 does not depend on policy before that timestep. The induction
proceeds to h € [H] in the following three steps.

WPI CS 525 / DS 595 - ST: Multi-Agent Decision Making Fall 2025

1) Q; is optimal. We have, V(s,a),

max QF (s, a)
K

=max Rp(s,a) + Eyp,(s,0)[Vir1(5)] (1a)

:Rh(sv CL) + mf’x ES’NPh(s,a) [Vhﬁ—l—l (5/)]

—FRa(5,0) + By o) | Vaiy ()] (1b)

=Ru(s,a) +Egp, (s,0)[Vip1(5)] (Induction hypothesis)
=Qh(s,a) (1c)

2) V)¥ is optimal. We have, Vs,
max V}'(s) =max Zﬂ'h(a|s)QZ(s,a)
— Th+1:H
B, 2 mhlals) QR (510
_ * 1d
max ;ﬂh(aIS)Qh(saa) (1d)

~ max Qj(s.a)
=V (s) (le)
3) 7. is optimal. We have, Vs,
Vhﬂ:“H (s) :QZ;“ZH (s,a) (where a := 7} (s) = argelgax Q@ (s,a))
=Ri(s5,) + Eaop (o) [Vii ™ (5)]
=Rp(s,a) + Egop,(s,a) [V;H(S/)] (1f)

The proof completes because steps (1,2,3) finish the induction on h. O

WPI CS 525 / DS 595 - ST: Multi-Agent Decision Making Fall 2025

References

	Markov Decision Processes: The Finite-Horizon Setting
	Interaction protocol

	Policy and Value
	Planning in MDPs
	Bellman equation for policy evaluation
	Bellman optimality equation

